
Requirements for applying aspect-oriented
techniques in web service composition languages

Mathieu Braem and Niels Joncheere

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
mbraem@vub.ac.be, njonchee@vub.ac.be

Abstract. In current composition languages for web services, there is
insufficient support to explicitly separate crosscutting concerns, which
leads to compositions that are hard to maintain or evolve. A similar
problem in object-oriented languages is being tackled by aspect-oriented
programming, and some work has been started to apply these techniques
to web service composition languages as well. We identified some prob-
lems with these approaches. This short paper lists these limitations and
offers a number of requirements to apply aspect-oriented techniques to
workflow languages.

1 Introduction

Web services [1] are a popular way of making existing software available as
external services over a network, through standardized protocols. In recent years,
workflow languages [2] are used to express these web service compositions. One
of the most popular languages today, is WS-BPEL [3].

Even though WS-BPEL, and other workflow languages, are very well suited
to express these kind of compositions, its abstraction model doesn’t explicitly
support a good separation of concerns [4]. WS-BPEL processes are coded ac-
cording to the requirements of the core functionality, which means that concerns
other from the main concern, do not fit the decomposition, and end up scattered
in the process.

A typical example of a non-core concern, is a business rule such as “billing” [5],
which keeps some data during the execution of the process, e.g. the duration of
invocations of external services, and charges the user proportionally. Without
explicit support for separation of concerns, the billing concern cannot be cleanly
separated from the base process, and is scattered in and tangled with the other
concerns.

The same problem was originally identified in object-oriented systems, and
aspect-oriented software development (AOSD) proves to be a valid solution [6].
The research community acknowledges this problem for workflow languages, and
understands AOSD has potential in this context too [7]. There already have
been proposals to approach the problem with AOSD solutions. However, they



literally translate the existing AOSD approaches for object-oriented languages
to workflow languages, without much regards for the specific needs of these
workflow languages.

In this short paper the requirements for applying aspect-oriented techniques,
to separate crosscutting concerns in web service composition languages, are out-
lined. Section 2 details the problem with current workflow languages. Section 3
gives an overview of the current approaches and their limitations. In section 4
we layout the directions for our future research, and list the features and require-
ments that we deem necessary in an AOSD approach to the problem. Section 5
concludes the paper with a short summary of the problem and our envisioned
solution.

2 Crosscutting concerns in web service compositions

Web services are a relatively new standard that allow communication between
distributed processes, based on existing internet protocols (e.g. http), with the
addition of some required “middleware”-enabling protocols, e.g. WS-Security.
Web services are of use in two different settings. They can be used to offer
certain paid services on the internet, or they can realize the integration between
several business processes. A web service is an interface, describing a number
of operations that can be called by sending messages over a network. They
are the foundation of the service oriented architecture (SOA). In this approach,
applications use services that offer a certain function on the network. The clients
are unaware of the specific implementation of the service, and only rely on its
interface. This kind of loose coupling allows independent evolution of services,
while maintaining compatibility with client applications.

2.1 Web service compositions

Web service composition is a powerful mechanism to create new web services.
Imagine, for example, a travelling agent that offers separate services to book
airplane tickets and hotel reservations. By composing these two services, we
obtain a new service with which customers can book all-in trips. This kind of
reuse removes a lot of complexity in designing advanced web services, as large
parts of the service are handled by external services. They offer an added value
over regular web services.

We can distinct two large families of web service composition languages. On
one side, there are languages that define executable processes by means of web
service orchestrations. They do so by fixing a well-defined order of interaction
between web services. On the other side, web service choreographies only define
the publicly visible behavior of the messages that are exchanged between services.
They do not define the internal logic of a process, and as a result, they are not
executable.

Choreographies are useful to verify the communication protocol of services,
the specific order of messages that are to be exchanged. Consider for example a



web service where a user has to log himself in and out with the service, before
and after further interaction. This protocol can be enforced with a choreography
specification, without detailing the internal logic of the services. A number of
high level composition languages exist that support web services standards. Most
notably, there are WSCL [8], YAWL [9], en WS-BPEL [3]. However, none of these
languages offers a way to separate crosscutting concerns.

2.2 Crosscutting concerns

One important principle in programming languages, is that of separation of
concerns, which states that properties of software systems must be dealt with
separately. Doing so, those parts of the system can be more easily specified,
changed, removed or reused.

In object-oriented programming, programs are built by making a class hier-
archy of the problem domain. Properties that do not fit this modularization, end
up scattered in the application, and entangled with each other. These properties,
are the so-called cross-cutting concerns, and are a direct result of the tyranny
of this dominant decomposition [10]. As noticed by Arsanjani et al. [7] and oth-
ers [11–13], this problem also applies to web service composition languages.

In our example of the travelling agent, this could be a “Billing” concern, that
measures the time it took to talk to the several web services, and charges the
user accordingly. Coding this in the web service composition using the traditional
mechanisms, leads to scattered and entangled code. An approach to this general
problem is proposed under the form of aspect-oriented programming, and while
most research is focused on its application to object-oriented programming, a
few approaches for web service composition languages have come forward as well.
The following section gives more details on these approaches.

3 Current approaches

Current approaches to achieve better separation of concerns in web service com-
positions are designed to use aspect-oriented technology. This section starts with
an overview of this relatively new programming paradigm, and continues to de-
scribe the current approaches and their shortcomings.

3.1 Aspect-oriented software development

To support a better separation of concerns, aspect-oriented software program-
ming (AOP) is proposed. Kiczales et al. note that with the existing methods,
certain properties of an application have to be implemented in multiple modules
of the system. The same logic is repeated over several modules, which means
there is an amount of code duplication. This gives the typical problems that it
is hard to add or remove these concerns, to change or even reuse them. AOP
wants to achieve a better separation of concerns by moving these crosscutting
concerns into separate modules, named aspects. Changing, adding or removing



concerns that are specified in aspects, no longer require changes in the rest of
the system.

Several approaches to AOP exist. AspectJ is the first, and also the most well
known, approach. This language is an extension to Java and allows programming
of concerns in modules (aspects), separate from the classes of the base system.
AspectJ introduces a few new concepts to achieve this goal. An aspect describes
when it applies, by selecting a number of “join points”. These join points are
well-defined events during the execution of a program, e.g. the execution of a
method. The expression that selects these join points is called a “pointcut”.
The aspect specifies in the “advice” what should happen on those selected join
points. An “aspect weaver” activates the aspects on the places specified by the
pointcuts.

3.2 Current approaches using AOSD on web services

– AO4BPEL. In [11], Charfi presents AO4BPEL, an aspect-oriented extension
to WS-BPEL. It is a dynamic approach, meaning that aspects can be added
to or removed from a composition at runtime, while the process is being
executed. This approach requires a modified WS-BPEL engine, and is not
compatible with existing software. In AO4BPEL each activity is a possible
join point. Pointcuts capturing these join points are written in the low-level
XPath language.

– AdaptiveBPEL. Another dynamic approach is AdaptiveBPEL [14]. This is
a framework that allows managing dynamic aspects. In this approach it is
possible to plug in and remove aspects into a core service composition to
address quality-of-service concerns and adapt to changes in business rules.
AdaptiveBPEL also relies on a modified WS-BPEL engine which applies
aspects at runtime.

– Courbis and Finkelstein. An aspect-oriented extension resembling AO4BPEL
is proposed by Courbis and Finkelstein [15]. In their approach they use
XPath as a pointcut language and a modified WS-BPEL engine to allow
dynamic addition and removal of aspects. Their advice language is Java.

3.3 Limitations of the current approaches

A first observation we made in studying the current approaches, is that they are
all quite literal, direct translations of aspect-oriented solutions of object-oriented
systems to the web service composition context. A result of this, is that these
approaches suffer from a number of shortcomings. Some problems arise with the
application of AOSD to the web service composition domain (problems 1 and 2).
Others stem from the difficulties in object-oriented AOSD research (problems 3,
4 and 5). The issues there are also appearant in the web service composition do-
main, and it is worthwhile to investigate the application of the current techniques
in this new context.



1. Confused layers of abstraction. It is important to stay on the same level
of abstraction as the base WS-BPEL process. In more recent versions of
AO4BPEL it is possible to alter SOAP messages on the engine level, which
allows expressing concerns that can not (easily) be written in a WS-BPEL
process. But doing so, this is no longer an approach to separate concerns on
workflow level. This extension is also specific to implementation details, by
being only applicable on WS-BPEL engines that uses SOAP as the transport
protocol. In the approach of Courbis and Finkelstein, the abstraction layers
also fade. Their advice code is written in Java, and, unfortunately, is not only
used to obtain a clean separation of concerns, but also to execute arbitrary
Java code in WS-BPEL processes. Code expressed in the Java language is
of a lower abstraction-level than WS-BPEL.

2. Missing workflow-specific concepts. The current approaches lack concepts
that are specific to web service composition languages. The advice model
should support workflow specific concepts, such as synchronization, skipping
activities, etc.

3. Limited pointcut language
(a) The pointcut language in AO4BPEL and the approach of Courbis and

Finkelstein is XPath, which is a language to navigate an XML structure.
The pointcuts in these approaches are no more than XPath expressions
that point to a direct path in a WS-BPEL XML document. Being tied
so closely to the structure of an XML file, limits the reusability of the
pointcuts. They are very fragile, and easily break when the process would
evolve.

(b) None of the approaches support quantification of the join points based
on protocol. If we for instance want to express that an aspect can only
activate on the third execution of a certain action, we should be able to
express this in the pointcut language.

4. Reusability. One of the most appealing advantages of aspects is that they
are reusable. A concern implemented in an aspect, should be applicable to
multiple compositions. However, current approaches require the aspect to be
changed to the specifics of the composition it is applied to. Some techniques
to solve this are proposed in current research in the AOSD field, but are not
considered in the approaches for composition languages.

5. Aspect interaction. When multiple aspects are applicable on a single join
point, the so called “feature interaction” problem occurs. Aspects are not
necessarily orthogonal, and as such, the order of execution matters. It is
furthermore desirable to express more advanced aspect compositions than
a simple ordering. Current approaches for composition languages either do
not consider this problem, or try to tackle it in a very limited way.

4 Towards better separation of concerns in web service
compositions

In this section we list the requirements for a better aspect-oriented approach to
separation of concerns in web service composition languages. The list is based on



the limitations we identified in existing approaches and introduces some novel
ideas.

1. Workflow-specific advice. We extend the advice language with concepts that
are specific for workflow languages. Examples of these specific concepts are
listed here.
(a) Advice without order. In advising web service compositions it occurs that

a branch has to be added in a construction where the order is not of
importance. For example, an extra activity to be executed in a parallel
split, or an extra condition in a merge activity. This kind of advice is
named “in” advice [16]. Another kind of workflow specific advice is the
“while” advice, that specifies that a certain activity is to be executed
during the execution of the selected join point.

(b) Skipping advice. Aspects can specify that certain activities are no longer
to be executed. Consider for example an aspect that specifies that a
certain part of a web service composition is no longer of use, because
some decisions are made by the client beforehand.

(c) Synchronize activities. Aspects can alter workflows in such a way, that
new synchronization points are to be introduced in the composition. In
future research we plan to look into how this can be easily expressed,
and how this can be efficiently implemented.

2. Declarative pointcut language. Using a pointcut language based on logic pro-
gramming offers advantages over traditional pointcut languages. Pointcuts
are no more than logic rules that select join points. It is very easy to create
new pointcuts by reusing the old ones. Furthermore, it is possible to write
recursive pointcuts. Introducing an expressive pointcut language, addresses
problem 3a.

3. Protocol based quantification. Web service compositions express processes,
and precisely in such program specifications it is interesting to express the
applicability based on a sequence or a protocol of events (problem 3b). Con-
sider for instance a workflow where a user has three chances to complete
a password request before he is denied further access to the service. This
can be encoded in a separate aspect, if there is support for remembering
prior events in the execution of a workflow. This is also known as “statefull
aspects” [17, 18].

4. Deployment constructs. Aspects are often applicable on more than a single
web service composition, and therefore we want them to be as reusable as
possible. As shown in problem 4, current approaches have little support for
this. In order to achieve this, we plan to use a dedicated layer between the
aspects and the compositions to which they apply. In this layer deployment
specifications are made. In the deployment constructions we also express
the aspect composition specifications that address the feature interaction
problem (as shown in problem 5). Lastly, the deployment construct is a good
place to specify how the aspects are to be deployed: e.g. one per workflow
instance, globally, etc.



5 Conclusion

Current web service composition languages lack support to explicitly separate
crosscutting concerns from each other and the base workflow. This problem was
already found in object-oriented programming language, and the solution that
is proposed for these languages can be applied to workflow languages as well.
However, this approach can not be literally translated to this other paradigm,
as workflow languages have their own specific needs. Current approaches ap-
proaches do not take this into account, and as such suffer from some shortcom-
ings.

In this short paper we identified these limitations of the current approaches.
We also listed a number of requirements for future work to tackle these prob-
lems. We already started the development of an aspect-oriented extension to WS-
BPEL, which we named Padus [16]. This approach strives to a better reusability
of aspects and uses several techniques to accomplish this. Padus uses a declara-
tive pointcut language, based on logic programming. In this pointcut language, it
is possible to select join points in a describing way, rather than explicitly listing
the points. Padus also supports explicit aspect deployments for further reuse.
In addition to the regular before-, after- and around advice, the advice model
of this language already supports “in” advice to allow including new branches
in orderless structures like parallel splits (flow activities). Padus, however does
not yet support some of the requirements listed in the previous section, e.g. the
“while” advice and support for protocol based quantification in the pointcut
language.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V., eds.: Web Services: Concepts,
Architectures and Applications. Springer-Verlag, Heidelberg, Germany (2004)

2. Du, W., Elmagarmid, A.: Workflow management: State of the art vs. state of the
products. Technical Report HPL-97-90, Hewlett-Packard Labs, Palo Alto, CA,
USA (1997)

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, version 1.1 (2003)

4. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Comm. ACM 15(12) (1972) 1053–1058

5. D’Hondt, M., Jonckers, V.: Hybrid aspects for weaving object-oriented function-
ality and rule-based knowledge. [19] 132–140

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Technical Report SPL97-008 P9710042,
Xerox PARC (1997)

7. Arsanjani, A., Hailpern, B., Martin, J., Tarr, P.: Web services: Promises and
compromises. Queue 1(1) (2003) 48–58

8. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., Williams, S.: Web Services
Conversation Language (WSCL) 1.0. W3C Note 14 March 2002, World Wide Web
Consortium (2002) http://www.w3.org/TR/2002/NOTE-wscl10-20020314/.



9. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language (revised version). QUT Technical Report FIT-TR-2003-04, Queensland
University of Technology, Brisbane, Australia (2003)

10. Ossher, H., Tarr, P.: Using subject-oriented programming to overcome common
problems in object-oriented software development/evolution. In: Proc. 21st Int’l
Conf. Software Engineering, IEEE Computer Society Press (1999) 687–688

11. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In Zhang, L.J., ed.: Proceedings of the 2nd European Conference on Web Services
(ECOWS 2004), Erfurt, Germany, Springer-Verlag (2004) 168–182

12. Cottenier, T., Elrad, T.: Dynamic and decentralized service composition with Con-
textual Aspect-Sensitive Services. In: Proceedings of the 1st International Confer-
ence on Web Information Systems and Technologies (WEBIST 2005), Miami, FL,
USA (2005) 56–63

13. Verheecke, B., Vanderperren, W., Jonckers, V.: Unraveling crosscutting concerns
in web services middleware. IEEE Software 23(1) (2006) 42–50

14. Erradi, A., Maheshwari, P.: AdaptiveBPEL: A policy-driven middleware for flexible
web services composition. In: Proc. of the EDOC Middleware for Web Services
Workshop (MWS 2005), Enschede, The Netherlands (2005)

15. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: ICSE ’05:
Proceedings of the 27th international conference on Software engineering, New
York, ACM Press (2005) 69–77

16. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten,
R., Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using
Padus. In Dustdar, S., Fiadeiro, J., Sheth, A., eds.: Proc. of the 4th Int’l Conf. on
Business Process Management (BPM 2006). Volume 4102., Vienna, Austria (2006)
113–128

17. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis
of stateful aspects. [19] 141–150

18. Vanderperren, W., Suvée, D., Cibrán, M.A., De Fraine, B.: Stateful aspects in
JAsCo. In Gschwind, T., Aßmann, U., Nierstrasz, O., eds.: Proc. 4th Int’ Work-
shop on Software Composition (SC 2005), Revised Selected Papers. Volume 3628.,
Edinburgh, UK, Springer-Verlag (2005) 167–181

19. Lieberherr, K., ed.: Proc. 3rd Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2004). In Lieberherr, K., ed.: Proc. 3rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2004), ACM Press (2004)


