
Requirements for an Aspect-Oriented Workflow System for
Grid Services

Niels Joncheere
System and Software Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

njonchee@vub.ac.be

Wim Vanderperren
System and Software Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

wvdperre@vub.ac.be

ABSTRACT
In this position paper, we propose a new generation workflow
system for grid services. We observe that grid computing
has become an increasingly important application domain
in computer science. Grid services — a new technology
based on web services — are expected to become the de
facto standard for grid computing. Similar to web services,
an effective mechanism is needed for the composition of grid
services. Existing technologies, however, have a number of
important drawbacks: they have limited or no support for
modularization of crosscutting concerns, for dynamic work-
flow adaptation, and for high-performance computing. We
propose a new generation workflow system that is tailored
specifically for grid services, and that tackles these prob-
lems, among others. We evaluate the impact of our proposed
workflow system on several software engineering properties,
in particular on comprehensibility, predictability and evolv-
ability.

Keywords
Aspect-oriented software development, grid services, work-
flow languages

1. INTRODUCTION
Over the last years, grid computing has become an increas-
ingly important research domain within computer science.
“The Grid” can be described as a service for sharing com-
puting power and data storage capacity over the Internet [2].
The specific problem that lies at the heart of this technol-
ogy is coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations [16]: the
large scope of many current scientific problems makes it in-
creasingly difficult to solve them using only one computer
system, and forces the use of a distributed solution. By
creating a virtual organization of different resources, which
typically don’t belong to the same owner but are connected
through the Internet, it is possible to address these prob-

Submitted to the AOSD 2006 Workshop on Software Engineering Properties
of Languages and Aspect Technologies (SPLAT 2006)

lems. A recent challenge is the use of grid technology beyond
scientific applications, more specifically in the production
and design of products in industrial environments. Such
design tasks typically require the use of multiple complex
simulation- and optimization tools, which are used as part
of a design process workflow.

Since 2002, a standardization effort for grid computing has
been active under the form of the Open Grid Services Archi-
tecture (OGSA) [4]. This initiative aims to promote the ac-
ceptance and application of grid technologies through stan-
dardization. Its main task is the harmonization of academic
activities concerning the Grid, with web services [5], a tech-
nology which also has a lot of industry support. Web ser-
vices are applications that are accessible through the Inter-
net and which use SOAP/XML for the transmission of infor-
mation and WSDL/UDDI for the description and discovery
of other web services. The OGSA standardization work has
led to the development of grid services [15], which are ac-
tually a subclass of web services, with additional properties
relevant for grid computing. It is expected that grid services
will soon become the de facto standard for grid computing.

Although the services themselves have been standardized,
composing grid services is still an open issue. Grid services
are currently typically composed by manually writing the
necessary glue-code in programming languages such as C
and Java. In the web services world, however, it has been
identified that a composition of web services is more natu-
rally captured by dedicated workflow languages instead of
a general-purpose programming language. Languages such
as BPEL4WS [7] and WS-CDL [19] have already been well
accepted in the web services community. Because grid ser-
vices are a kind of web services, it is in principle possible to
recuperate these workflow languages for grid services. How-
ever, we identify several problems with current practice web
service workflow languages:

• Most workflow languages do not have a clearly defined
semantics [29].

• Most languages are not suitable for high-performance
computing.

• There is insufficient support for the modularization of
crosscutting concerns [21].



• There is insufficient or no support for dynamic adap-
tation of workflows.

In this position paper, we analyze the current situation of
grid service composition and identify the main limitations.
Based on these limitations, we propose the requirements
for a workflow system for grid services. We discuss how
the comprehensibility, predictability and evolvability are af-
fected when such a system is available. Finally, we present
related work and state our conclusions.

2. LIMITATIONS OF CURRENT AP-
PROACHES

Several workflow approaches for grid computing currently
exist [9, 8, 17, 26, 23, 18]. However, they use their own
service and communication standards, which makes them
incompatible with each other. Furthermore, none of them is
suited for the new grid services standard. For this end, com-
posing grid services is currently typically handled by man-
ually programming glue-code. Existing workflow systems
for web services can technically be used for composing grid
services, as grid services are a special kind of web services.
However, there are several problems with current workflow
systems for web services which make them less suited for
the grid services context. Currently, BPEL4WS is well sup-
ported and widely accepted as the de facto standard. For
this end, we will limit our discussion of limitations to the
BPEL4WS approach. Most of the limitations are also ap-
plicable to the other, less frequently used approaches.

2.1 Semantics
van der Aalst [29] observes that most workflow languages
for web services do not have a clearly defined semantics.
BPEL4WS is a combination of WSFL [22] and XLANG [28],
which are on their turn combinations of other, earlier lan-
guages. A large amount of the functionality of the original
languages has ended up in the new language. Because of
this and other reasons, the language is not very clear.

2.2 High-Performance Computing
Another important topic regarding workflow languages for
grid services is the support for the specific requirements
that are typically of importance with high-performance com-
puting. In such an environment, it is common that large
amounts of data need to be transferred from one step in a
workflow to another. Special attention should be directed
to how this happens: it would, for example, be unaccept-
able if all these data were transferred to a central workflow
coordinator before being transferred to a next step. This is,
however, current practice in BPEL4WS workflow systems.

2.3 Separation of Concerns
BPEL4WS does not have sufficient support for separation of
concerns [24]. It is very difficult to modularize BPEL4WS
processes in an effective way because each process must be
specified in a single XML file. It is not possible to spec-
ify sub-processes straightforwardly. Complex processes thus
give rise to large XML files, which can become difficult to
understand and maintain. A workaround for this problem is
to define sub-processes as separate services, but this is not

always desirable, as it introduces additional overhead and
scoping problems.

Even if BPEL4WS would support sub-processes, some con-
cerns still could not be modularized successfully. Examples
of these concerns are security concerns such as access con-
trol and confidentiality [13], debugging concerns such as log-
ging [20] and timing contract validation [31], and business
rules such as billing [14]. These concerns are encountered
frequently in typical BPEL4WS workflows, and thus a so-
lution for better modularization based on aspect-oriented
techniques [21] is necessary.

2.4 Dynamism
BPEL4WS does not support altering the workflow specifi-
cation while it is running. The only exception is altering
the concrete partner bindings (web services) when the addi-
tional standard WS-Addressing [10] is employed. In a grid
services context, where long-running computations are the
norm, dynamic adaptation is essential in order to manage
changed requirements.

3. A NEW GENERATION WORKFLOW
SYSTEM

This section specifies the requirements of our new generation
workflow system. These can be divided into six properties,
namely workflow, AOSD, dynamism, modularity, high-per-
formance computing, and semantics. Each of these proper-
ties will be discussed in further detail below.

3.1 Workflow
Every workflow language needs to define the basic activities
that it supports, and how these activities can be ordered.
Concerning the basic activities, we support invoking grid
services (both synchronously and asynchronously), and as-
signing and retrieving variables. We may select other activ-
ities at a later time.

Concerning the ordering of activities, existing literature is
useful when deciding which kinds of orderings must be sup-
ported. For example, van der Aalst et al. [30] have identi-
fied a number of recurring workflow patterns, from elemen-
tary to complex, based on an extensive study of existing
workflow languages. These patterns can be divided into six
categories: basic control patterns, advanced branching- and
synchronization patterns, structural patterns, patterns in-
volving multiple instances, state-based patterns, and cancel-
lation patterns. Our workflow language naturally supports
the basic control patterns (such as sequence and exclusive
choice), but regarding the more complex patterns, we need
to weigh expressivity against clarity.

3.2 AOSD
Just like with regular software, some concerns of a grid ser-
vice composition (such as billing and logging) cannot be
modularized using current technologies: they end up scat-
tered across the composition, and tangled with one another.
This makes it difficult to add, modify or remove these con-
cerns. In order to avoid such problems, one of the main
properties of our workflow system is that it supports AOSD
in order to allow the modularization of crosscutting con-
cerns.



We propose a joinpoint model that allows advices to be exe-
cuted before, around and after each basic workflow activity
(e.g. service invocations, variable assignments, etc.). Point-
cuts are expressed in a language that allows selecting join-
points based on the names and types of the corresponding
workflow activities. Advices are expressed in the basic work-
flow language.

Because workflows involving grid services typically run for
a long time, and on expensive infrastructure, it is impor-
tant that the chance of encountering unexpected behavior
is minimized. Therefore, we require that all properties of
aspect-oriented interactions (such as the order in which mul-
tiple advices, which are applicable on the same joinpoint, are
applied) are specified in advance.

3.3 Dynamism
Grid workflows often take a lot of time to complete, because
of the complicated calculations and the large amounts of
data involved. Additionally, they run on complicated, ex-
pensive infrastructure, which may be used on a pay-per-use
basis. This makes it prohibitively expensive if workflows do
not behave as expected, and have to be restarted.

This problem is our motivation for requiring that all proper-
ties of aspect-oriented interactions are specified in advance.
However, this does not solve the problem completely: sup-
pose that a certain business unit of a company is awaiting
the results of a grid workflow that is taking more time to
complete than expected. In such a case, it could be useful if
the workflow could be modified while it is running in order
to get it to finish faster (e.g. by removing certain parts of
the workflow that are not considered essential to obtain the
results needed by the business unit).

As another example, consider the case where an error is
discovered near the end of a workflow that already has per-
formed a lot of useful computations. In this case, correcting
part of the workflow while it is running would certainly be
preferable to terminating it and restarting it after the work-
flow is corrected.

Therefore, our workflow system supports dynamic workflow
adaptation, i.e. it is possible to modify workflows while they
are being executed. We allow pieces of workflow to be added,
replaced or removed in any place where the control flow has
not yet passed at the time of the modification. We aim
to prevent introducing specific language constructs for this
purpose: a piece of workflow should not need to know that
some of it might be adapted during its execution, or that it
might be used to replace another piece of workflow.

The dynamism we discussed above concerns the basic work-
flow description. However, dynamism can be useful with re-
spect to AOSD, too: several AOP languages [25, 27] already
support dynamic enabling and disabling of aspects in order
to facilitate adapting to concrete situations. Therefore, our
workflow system supports dynamic AOSD, too.

3.4 Modularity
Because of our system’s support for AOSD, it facilitates
modularizing crosscutting concerns. Using current work-
flow languages, however, it is not always possible to effec-

tively modularize even the basic workflow. For example, a
BPEL4WS process is always one monolithic specification,
which makes it impossible to reuse parts of a process else-
where (unless these parts are modeled as separate web ser-
vices, which introduces a large amount of overhead).

Therefore, we allow parts of a workflow to be specified in
separate modules, which can then evolve independently from
the main workflow, and can be reused in other workflows.
It is clear that such an approach is an improvement on a
number of current approaches.

3.5 High-Performance Computing
In traditional web services applications, the messages that
are exchanged between services are typically very small. In
grid computing, on the other hand, it is common that large
streams of data need to be transferred. Therefore, requiring
that all data passes through a central workflow coordinator
— as is the case with conventional workflow languages such
as BPEL4WS — is unacceptable, as it would require much
more network capacity than is actually necessary. We there-
fore aim to remedy this problem by providing a distributed
workflow coordinator that makes sure large data streams are
routed directly to the next step in the workflow.

In order to provide this functionality, we introduce a lan-
guage construct that allows specifying which data streams
may be large and may thus require more efficient modes of
network transport. On the other hand, the workflow engine
may decide which streams of data are large, and handle them
accordingly, if such information is not specified.

3.6 Semantics
It has been argued that most current workflow languages do
not have a clearly defined semantics [29]. Among others, this
hampers compatibility between different engines for a same
workflow language. Therefore, we aim to define a formal
operational semantics for our workflow language.

4. IMPACT ON SOFTWARE ENGINEER-
ING PROPERTIES

This section evaluates the impact of our approach on a num-
ber of important software engineering properties, such as
comprehensibility, predictability, and evolvability.

4.1 Comprehensibility
Due to the better support for modularization of both cross-
cutting and non-crosscutting concerns, we claim that the
comprehensibility is significantly improved. By isolating
each concern in a separate module, it becomes easier to com-
prehend and maintain the system.

4.2 Predictability
Our system actually aims for maximum reliability and pre-
dictability. For this end, all properties have to be explicitly
defined up-front. For instance, there are no implicit assump-
tions about aspect relationships such as precedence. The
compiler demands an explicit precedence specification when
there is a potential overlap between the joinpoints that two
aspects advise. Similarly, our system is type-safe from an
aspectual point of view. The advice has to define the types



of variables it obtains from the joinpoint (e.g. arguments).
The compiler checks whether this type is indeed delivered
by the joinpoint. This is in contrast to typical framework-
based AOP approaches such as JBoss AOP [3], which do not
provide similar type-safety.

4.3 Evolvability
Because of the improved separation of concerns, evolvability
is also enhanced significantly. Every concern is confined in
one module, making the addition/modification/removal of
a concern easier. In addition, our system supports dynamic
evolvability in order to encompass long-running workflows.

5. RELATED WORK
An aspect-oriented extension to BPEL4WS — AO4BPEL
[12] — has been proposed. This extension supports dynamic
adaptation of aspects. However, because it is an extension
to BPEL4WS, it inherits the deficiencies identified in this
paper, such as limited support for modularization (of non-
crosscutting concerns) and high-performance computing.

Currently, grid services are mostly composed manually, by
writing programs in traditional programming languages (e.g.
C and Java), which use libraries such as the ones provided by
the Globus Toolkit [1] to interact with concrete grid services.
This situation obviously has a lot of drawbacks, as these lan-
guages do not support dynamic adaptation of the composi-
tion, or modularization of crosscutting concerns. Recently,
however, a number of approaches have been proposed that
aim to remedy this problem.

GridNexus [11] is a graphical system for creating and exe-
cuting scientific workflows in a grid environment. A GUI
allows developers to specify processes by creating directed
acyclic graphs whose nodes perform simple computing tasks,
or invoke grid services. Processes can be saved as compos-
ites, which can then be reused in other processes. Visual
process specifications are represented by scripts written in
a language called JXPL, which can be executed by an ap-
propriate engine. By using such scripts, the user interface is
separated from workflow execution. Although this approach
is a serious improvement on manual grid services composi-
tion, it is targeted mainly at scientific grid applications, and
not at industrial applications. It does not support dynamic
workflow adaptation nor advanced separation of concerns.

Kepler [6] is a graphical workflow system similar to Grid-
Nexus (both approaches even use the same GUI technology).
Like GridNexus, processes are directed acyclic graphs. The
most important difference is that Kepler does not translate
diagrams to scripts in order to execute workflows: workflows
are executed by the GUI, thus increasing coupling between
process definition and execution. Kepler is also aimed at sci-
entific applications, and does not support dynamic workflow
adaptation nor advanced separation of concerns.

6. CONCLUSIONS
In this position paper, we observe that, although the appli-
cation domain for grid services is rapidly expanding, current
approaches have a number of disadvantages that limit their
applicability and thus hamper the acceptance of grid ser-
vices in industrial settings. The most important disadvan-

tages are insufficient support for AOSD, dynamic workflow
adaptation, and high-performance computing.

Therefore, we propose a new generation workflow system,
which is specifically tailored for grid services. Although our
system is targeted at grid services, some of its contributions
can also be recuperated for web service workflow languages.
For instance, we expect that the support for AOSD and
dynamic workflow adaptation can be generalized to existing
technologies for web service composition.

7. REFERENCES
[1] The Globus Toolkit.

http://www.globus.org/toolkit/.

[2] GridCafé. http://gridcafe.web.cern.ch/gridcafe/.

[3] JBoss Aspect Oriented Programming.
http://www.jboss.org/products/aop.

[4] The Open Grid Services Architecture (OGSA).
http://www.globus.org/ogsa/.

[5] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,
editors. Web Services: Concepts, Architectures and
Applications. Springer-Verlag, Heidelberg, Germany,
2004.

[6] I. Altintas, C. Berkley, E. Jaeger, M. Jones,
B. Ludäscher, and S. Mock. Kepler: An extensible
system for design and execution of scientific workflows.
In Proceedings of the 16th International Conference on
Scientific and Statistical Database Management
(SSDBM 2004), Santorini, Greece, June 2004.

[7] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services version
1.1, May 2003. http:
//www.ibm.com/developerworks/library/ws-bpel/.

[8] J. Basney and M. Livny. Deploying a high throughput
computing cluster. In R. Buyya, editor, High
Performance Cluster Computing: Architectures and
Systems, Volume 1. Prentice Hall, 1999.

[9] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox,
W. Furmanski, and G. Premchandran. WebFlow — a
visual programming paradigm for web/Java based
coarse grain distributed computing. Concurrency —
Practice and Experience, 9(6):555–577, 1997.

[10] D. Box, E. Christensen, F. Curbera, D. Ferguson,
J. Frey, M. Hadley, C. Kaler, D. Langworthy,
F. Leymann, B. Lovering, S. Lucco, S. Millet,
N. Mukhi, M. Nottingham, D. Orchard, J. Shewchuk,
E. Sindambiwe, T. Storey, S. Weerawarana, and
S. Winkler. Web Services Addressing
(WS-Addressing). W3C Member Submission 10
August 2004, World Wide Web Consortium, August
2004. http://www.w3.org/Submission/2004/
SUBM-ws-addressing-20040810/.

http://www.globus.org/toolkit/
http://gridcafe.web.cern.ch/gridcafe/
http://www.jboss.org/products/aop
http://www.globus.org/ogsa/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/


[11] J. L. Brown, C. S. Ferner, T. C. Hudson, A. E.
Stapleton, R. J. Vetter, T. Carland, A. Martin,
J. Martin, A. Rawls, W. J. Shipman, and M. Wood.
GridNexus: A grid services scientific workflow system.
International Journal of Computer & Information
Science, 6(2):72–82, June 2005.

[12] A. Charfi and M. Mezini. Aspect-oriented web service
composition with AO4BPEL. In L.-J. Zhang, editor,
Proceedings of the 2nd European Conference on Web
Services (ECOWS 2004), pages 168–182, Erfurt,
Germany, September 2004. Springer-Verlag.

[13] B. De Win, W. Joosen, and F. Piessens. Developing
secure applications through aspect-oriented
programming. In R. E. Filman, T. Elrad, S. Clarke,
and M. Akşit, editors, Aspect-Oriented Software
Development, pages 633–650. Addison-Wesley, Boston,
2005.

[14] M. D’Hondt and V. Jonckers. Hybrid aspects for
weaving object-oriented functionality and rule-based
knowledge. In K. Lieberherr, editor, Proc. 3rd Int’
Conf. on Aspect-Oriented Software Development
(AOSD-2004), pages 132–140. ACM Press, Mar. 2004.

[15] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
The physiology of the grid: An open grid services
architecture for distributed systems integration, June
2002. http://www.globus.org/alliance/
publications/papers/ogsa.pdf.

[16] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
International Journal of High Performance Computing
Applications, 15(3):200–222, Fall 2001.

[17] N. Furmento, A. Mayer, S. McGough, S. Newhouse,
T. Field, and J. Darlington. Optimisation of
component-based applications within a grid
environment. In Proceedings of the 14th International
Conference on High Performance Computing and
Communications (SC 2001), Denver, CO, USA,
November 2001.

[18] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi,
R. Ananthakrishnan, F. Bertrand, K. Chiu,
M. Farrellee, M. Govindaraju, S. Krishnan,
L. Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma,
C. Olariu, and N. Rey-Cenvaz. Programming the grid:
Distributed software components, P2P and grid web
services for scientific applications. Cluster Computing,
5(3):325–336, July 2002.

[19] N. Kavantzas, D. Burdett, and G. Ritzinger. Web
Services Choreography Description Language version
1.0. W3C Working Draft 27 April 2004, World Wide
Web Consortium, April 2004. http:
//www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, Proc. ECOOP
2001, LNCS 2072, pages 327–353, Berlin, June 2001.
Springer-Verlag.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. Technical Report
SPL97-008 P9710042, Xerox PARC, Feb. 1997.

[22] F. Leymann. Web Services Flow Language (WSFL
1.0). IBM, May 2001.

[23] M. Lorch and D. Kafura. Symphony — a Java-based
composition and manipulation framework for
computational grids. In Proceedings of the 2nd
International Symposium on Cluster Computing and
the Grid (CCGrid 2002), pages 136–143, Berlin,
Germany, May 2002.

[24] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Comm. ACM,
15(12):1053–1058, Dec. 1972.

[25] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
G. Kiczales, editor, Proc. 1st Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2002),
pages 141–147. ACM Press, Apr. 2002.

[26] M. Romberg. The UNICORE grid infrastructure.
Scientific Programming, Special Issue on Grid
Computing, 10(2):149–157, 2002.

[27] D. Suvée and W. Vanderperren. JAsCo: An
aspect-oriented approach tailored for component based
software development. In M. Akşit, editor, Proc. 2nd
Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2003), pages 21–29. ACM Press, Mar. 2003.

[28] S. Thatte. XLANG — web services for business
process design. Microsoft, June 2001.
http://www.gotdotnet.com/team/xml wsspecs/

xlang-c/default.htm.

[29] W. M. P. van der Aalst. Don’t go with the flow: Web
services composition standards exposed. IEEE
Intelligent Systems, 18(1):72–76, January/February
2003.

[30] W. M. P. van der Aalst, A. H. M. ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow
patterns. Distributed and Parallel Databases,
14(3):5–51, July 2003.

[31] W. Vanderperren, D. Suvée, and V. Jonckers.
Combining AOSD and CBSD in PacoSuite through
invasive composition adapters and JAsCo. In
Proceedings of Net.ObjectDays 2003, pages 36–50,
Erfurt, Germany, September 2003.

http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

	Introduction
	Limitations of Current Approaches
	Semantics
	High-Performance Computing
	Separation of Concerns
	Dynamism

	A New Generation Workflow System
	Workflow
	AOSD
	Dynamism
	Modularity
	High-Performance Computing
	Semantics

	Impact on Software Engineering Properties
	Comprehensibility
	Predictability
	Evolvability

	Related Work
	Conclusions
	References 

