
WEB SERVICE COMPOSITION USING THE WEB SERVICES
MANAGEMENT LAYER

Niels Joncheere, Bart Verheecke, Viviane Jonckers
System and Software Engineering Lab (SSEL), Vrije Universiteit Brussel, Belgium

{njonchee,bverheec,vejoncke}@ssel.vub.ac.be

Sofie Van Hoecke, Gregory Van Seghbroeck, Bart Dhoedt
INTEC Broadband Communication Networks (IBCN), Universiteit Gent, Belgium

{sofie.vanhoecke,gregory.vanseghbroeck,bart.dhoedt}@intec.ugent.be

Keywords: Aspect-oriented programming, brokering, performance and scalability measurement, web services

Abstract: The Web Services Management Layer (WSML) is an academic middleware platform that is placed in between
clients and web services. It takes care of dynamic integration, selection, composition and client-side manage-
ment of web services, thus removing the need to take care of these concerns in clients. This paper describes
how the WSML can be used to express web service compositions, and presents the results of a number of
experiments which evaluate the performance and scalability of the current WSML implementation. These
results show that the WSML induces only a small overhead compared to systems in which the WSML has not
been deployed. The advanced features of the WSML therefore come a low cost in terms of performance and
scalability, which makes it a viable option in real-life web services applications.

1 INTRODUCTION

An important domain in web services research is
the design and development of languages that clearly
and naturally describe the logic of web service com-
positions. This has given rise to a number of ded-
icated web service composition languages, most of
which are based on earlier research on workflow lan-
guages (Du and Elmagarmid, 1997). Currently, the
most popular web service composition language is the
Business Process Execution Language (BPEL) (An-
drews et al., 2003). BPEL processes are platform- and
transport-independent, and are expressed using XML.

In current dynamic web services environments,
web services are offered by different service
providers. This poses a variety of challenges for the
clients of these services:

• Redirection. Services can become unavailable due
to service or network issues, services may be re-
placed by newer versions or taken out of business,
syntactical and semantical mismatches can occur,
etc. The clients need to be able to communicate
with services that were not known at development
or deployment time, and possibly compose ser-
vices together if necessary.

• Selection. Multiple services may offer the same or
similar functionality. In this case, a client must be
able to swap transparently to another service when
this service better suits the needs of the client.
The selection of the most optimal service can be
based on non-functional business requirements of
the client (e.g. preferring a cheaper service over
a faster one), or may be part of a load balancing
strategy such as round-robin, broker-side monitor-
ing, and server-side monitoring.

• Client-side management. Web services impose a
variety of requirements on clients such as com-
plying with an encryption protocol, performing
a pre-payment or following a specific authenti-
cation protocol. These concerns may vary from
service to service and from time to time. Fur-
thermore, clients may want to perform logging,
caching, pre-fetching, monitoring, etc. when they
engage in service communication.

This paper discusses web service composition in
the context of the Web Services Management Layer
(WSML). The WSML is an academic middleware
platform for dynamic integration, selection, composi-
tion and client-side management of web services, and
is based on aspect-oriented techniques. The WSML



is already reported on in previous work (Verheecke
et al., 2003; Verheecke et al., 2004; Verheecke et al.,
2006). In this paper, we focus on how the WSML
can be used to express web service compositions, and
measure the performance and scalability of our ap-
proach, i.e. the time required to handle individual re-
quests to a composition (response time), and the num-
ber of requests to a composition that can be handled
concurrently (throughput).

The outline of the paper is as follows. Section 2
introduces the context of our work. Section 3 de-
scribes web service composition using the WSML.
Section 4 describes our tests and discusses their re-
sults. Section 5 gives an overview of related work,
and Section 6 states our conclusions and proposes
some directions for future work.

2 THE WEB SERVICES
MANAGEMENT LAYER

2.1 Introduction

The Web Services Management Layer (WSML) (Ver-
heecke et al., 2003; Verheecke et al., 2004; Verheecke
et al., 2006) is a mediation framework targeted at
dynamic service environments. As discussed in the
introduction, such environments are associated with
the problems of redirection, selection and client-side
management. In order to avoid that service clients
need to deal with these problems in an ad-hoc fash-
ion on a service-per-service basis, the WSML aims to
deal with each of these concerns in a client- and web
service-independent manner. The WSML is placed in
between the client and the world of web services, as
depicted in Figure 1. On the left-hand side, the client
requests service functionality without referencing the
concrete web services. The WSML is responsible for
intercepting the client requests and choosing the most
appropriate service available on the right-hand side or
combining a number of services together in a com-
position, invoking them in a manner that complies
with any management requirements imposed by ser-
vice providers and returning the results to the client.
Using the WSML for service-oriented applications
has the advantage that more robust and flexible ap-
plications can be developed without having to rewrite
service-related code. Furthermore, replacing the web
service-specific invocations with generic service re-
quests and extracting all extra web service selection
and management code from the client applications fa-
cilitates future maintenance of the client application
code.

Web Service

Client Web Service

Web Service

WSML

Service
Integration

Service
Composition

Service
Selection

Service
Management

Figure 1: The Web Services Management Layer

2.2 Aspect Oriented Programming

Traditional software engineering methodologies do
not allow modularizing the challenges of web service
redirection, selection and client-side management as
separate entities. Instead, the implementation of these
concerns will end up scattered across the different
modules of the system, and tangled with other con-
cerns. The code for different concerns becomes in-
termixed, possibly at multiple places in the system.
Because these crosscutting concerns are spread and
repeated over several modules in the system, it be-
comes very hard to add, edit, verify, test or remove
such concerns individually. Moreover, the scattered
and tangled code seriously hampers the evolution of
the concerns and the base application.

Aspect-Oriented Programming (AOP) (Kiczales
et al., 1997) is a software engineering paradigm that
aims to solve these problems by achieving better sep-
aration of concerns (Parnas, 1972). The goal of AOP
is to allow developers to cleanly modularize crosscut-
ting concerns. Therefore, AOP introduces an addi-
tional module construct, which is called an aspect,
to encapsulate the crosscutting concern. These as-
pects can then be added, edited, verified, tested or
removed without without impacting the base applica-
tion. The points in the program’s execution where an
aspect must be applied are called joinpoints and they
are described using a pointcut language.

2.3 AOP in the WSML

In the WSML, a variety of aspects are employed:

• Redirection aspects modularize the logic to com-
pose multiple services together in a service-
independent manner, contain the mapping for in-
dividual web services and deal with syntactical
or semantical mismatches between what the client
expects and what the service offers.



• Selection aspects enforce the selection of the most
optimal service based on quality-of-service (QoS)
properties.

• Management aspects enforce client-side manage-
ment concerns imposed by the service or the
client, such as logging, billing and caching.

Figure 2 depicts the architecture of the WSML,
based on AOP. The client makes service requests on
service types, i.e. invariable interfaces that are ex-
posed to the client. These requests are intercepted
by redirection aspects that invoke the appropriate web
service(s) and return the result(s) to the client. Which
particular redirection aspect is triggered is determined
by one or more selection aspects. Additionally, man-
agement concerns are enforced by management as-
pects. Each concern is nicely modularized in the sys-
tem by a different aspect and deployed by a specific
connector (indicated in the figure with “C”). Each
connector specifies the deployment logic of an aspect.
As such, the aspect remains completely reusable as it
only contains “what” needs to be done to enforce the
concern. The connector specifies how and where the
concern needs to be enforced in the system.

Web 
Service A 

Service
TypeClient Web 

Service B

Web 
Service C

CB

CC

Service
Selection
Aspect

CACACS
CACA

ch5

ch6 ch7

Service
Selection
Aspect
Service

Selection
Aspect

Service
Selection
Aspect
Service

Selection
Aspect

Management
Concern
Aspect

Administration 
Service 

CM

WSML

Service
Redirection
Aspect A

Service
Redirection
Aspect B

Service
Redirection
Aspect C

Service
Repository

CA

Figure 2: WSML Architecture

With a static AOP approach, aspects are woven
into the base code at compilation time. This means
that adding or removing aspects requires recompiling
the system. Using a dynamic AOP approach it be-
comes possible to add and remove aspects at runtime
by providing traps at the possible joinpoints where
an aspect might be applied. A WSML prototype has
been implemented using JAsCo (Suvée and Vander-
perren, 2003), a dynamic AOP technology built on
top of Java. By exploiting the dynamic capabilities
of JAsCo, the WSML can be reconfigured at runtime

and can deal with events and changes in a dynamic
service environment without having to stop, or worse,
rewrite the system.

3 SERVICE COMPOSITION IN
THE WSML

Service composition is the orchestration of a num-
ber of existing services to provide a richer compos-
ite service assembled to meet the requirements of
the client. As explained in (Chakraborty and Joshi,
2001), a differentiation can be made between pro-
active compositions and reactive compositions. Pro-
active compositions are composed off-line for deploy-
ment in a stable, always-up, resource rich platform.
Typically, the composition is specified with a fixed
set of partners in mind. Reactive compositions on the
other hand are composite services that are created on
the fly based on more volatile partner agreements, of-
ten optimizing for real-time parameters such as avail-
able network bandwidth. Reactive compositions ref-
erence partner roles that are filled in at runtime.

Our dynamic service binding mechanism supports
both kinds of compositions, which makes it possi-
ble for compositions to be adaptable: for instance,
a non-responding service in the composition can be
replaced by a semantically equivalent one. Compo-
sitions in the WSML can also better deal with long-
term changes and evolution, as each composition is
modularized as a first-class entity: a composition as-
pect can be changed and recompiled easily without
affecting the rest of the system. For pro-active com-
positions, a dedicated composition aspect is written.
The invocation of the web services is addressed in the
composition aspect’s advice. To create reactive com-
positions that do not reference concrete services, the
aspect is adjusted to reference service types again. In-
voking service types from within a service composi-
tion allows for the specification of a composition in a
generic way without hardwiring concrete service in-
terfaces. It also avoids the explosion of the number
of service compositions that needs to be specified in
case multiple partners are available to fulfill a spe-
cific role in a composition. By specifying for each
individual service type which service(s) and compo-
sition(s) can be used to handle a request, a tempo-
ral composition is created that best fits the criteria of
the client. The complete redirection mechanism, sup-
porting transparent mappings between service types,
web services and service compositions is illustrated
in Figure 3. A service type is either fulfilled by a sin-
gle concrete web service, or by a service composition.
A composition is composed out of concrete web ser-



vices and/or service types.

Web
Service

Service
Composition

Web
Service

Service
Type

Service
Type

Figure 3: WSML service composition

An important implication of reactive compositions
is that a temporal composition is “created” at the mo-
ment a client request comes in. Each service type the
composition refers to is a partner role which is be-
ing filled in by a concrete service. The service types’
support for transparent hot-swapping introduces the
concept of dynamic partner roles: each partner in a
reactive composition can be replaced by another one.

4 EVALUATION OF THE WSML

In this section, we investigate the performance
and scalability of the WSML. The investigated per-
formance metric is the response time. To indicate the
scalability of the WSML, the maximum throughput
is measured. In the throughput investigation, an ex-
ception rate of 10% is allowed in order to discard the
possible exception fluctuations caused by the test en-
vironment.

4.1 Test Environment

Figure 4 shows our client behavior using the BPMN
notation. It consists of a number of consecutive invo-
cations of a broker service. The broker service will
forward each of these invocations to a dummy web
service with a very small execution time. Thus, the
overhead incurred by the middleware plays a very im-
portant role in the overall execution times and is not
hidden by large server execution times.

The dummy web service has two identical end-
points, each situated on different physical machines
(see Figure 5: Server 1 and Server 2). These two end-
points can be used for load balancing and thus provide
a certain level of QoS for the composed process. Load
balancing is an example of the selection challenge
talked about in the introduction. The broker service
(see Figure 5: Broker), which also runs on a different
physical machine, will choose at runtime which web

Invoke broker

Br
ok

er
Cl

ie
nt

nth test iteration =
n broker invocations

(loop)

Figure 4: Client behavior

service endpoint will be invoked. To make this deci-
sion, three different brokering solutions have been im-
plemented: round-robin, broker-side monitoring, and
service-side monitoring. Each of these is elaborated
below.

Broker

Client WSML

Server 1

Monitor
Service

Service

Server 2

Monitor
Service

Service

Figure 5: Test environment

The WSML runs on top of a Systinet for Java 6.5
server. The client machine (see Figure 5: Client)
will fire service invocations to the broker in a multi-
threaded fashion. Each thread simulates a client that
wishes to use the web service. During a certain pe-
riod of time every second a set of client threads will
be instantiated. The number of instantiated threads re-
sembles the throughput. Each individual client thread
is responsible for logging its own response time.

4.2 Brokering Solutions

Round-robin is a simple and easy to implement
brokering solution. It alternates in a deterministic way
between the different service endpoints. This means
that all the service endpoints will be invoked an equal
number of times. Round-robin is especially suited for
brokering when the different service endpoints have
(almost) the same QoS properties.

Broker-side monitoring will allow the broker to
make a decision based on some monitored property.



For example, this monitored property can be the re-
sponse time of a service invocation or the network la-
tency between the broker server and the service end-
points. The broker is responsible for gathering the
data that defines the property; this can be handled by
a separate thread or even by a separate tool installed
on the broker. The data (or an aggregated version of
it) can be requested by the broker to decide which ser-
vice endpoint will be invoked. This will result in one
additional internal function or internal service call per
actual service invocation. The implementation used in
the test environment monitors the response times for
the service endpoints in a separate thread. These re-
sponse times are aggregated to represent the service
rate (the inverse of the average response times) per
endpoint.

Server-side monitoring is almost the same as
broker-side monitoring, except the property is mon-
itored on the service endpoint itself. To retrieve the
data that defines the property, the broker has to in-
voke an external web service on the service’s end-
point. This will give per actual service invocation a
number of additional external service calls equal to
the amount of service endpoints. The advantage of
server-side monitoring is that server related properties
(e.g. total server load, service price) can be monitored
as well.

4.3 Test Results

The graphs in Figure 6 and Figure 7 illustrate the re-
sults of our tests with regard to response time and
throughput, respectively. Each graph shows a num-
ber of series, three of which concern the WSML:1

• wsmlRR: WSML approach with round-robin. A
dedicated round-robin selection aspect makes sure
each new client request is redirected to the next
service through the appropriate redirection aspect.

• wsmlBM: WSML approach with broker-side
monitoring. A dedicated monitoring aspect in-
serts measuring points in the composition and
monitors the response times of the dummy ser-
vices. This monitoring data is used by a selec-
tion aspect to select the fastest service with a fixed
probability.

• wsmlSM: WSML approach using server-side
monitoring. The monitoring aspect does not do
any internal monitoring but rather obtains the
monitoring data from external monitoring ser-
vices. In our tests, the monitoring data is simply a
random number.

1Series are combined when there is no significant differ-
ence between them.

Figure 6: Detailed view of the response times for the test
cases

Figure 7: Throughput for the test cases

Figure 6 shows the average response times (in mil-
liseconds) measured during 2 minutes of testing with
2 clients. We performed each test 10 times, with the
number of consecutive invocations executed by the
client composition ranging from 1 to 10.

In order to identify the performance overhead in-
duced by the WSML, we measured the response time
and throughput of the same client behavior, but with
a broker on which the WSML has not been deployed,
i.e. a broker that simply forwards each request to a
single web service. The results of this additional test
is shown in our graphs as the “direct” series. Because
this test reduces the amount of code that is executed
by the broker in response to each service invocation,
response times are lower than our previous tests. The
round-robin and broker-side monitoring tests induce
a constant overhead, while the server-side monitoring
test induces an overhead that increases with the num-
ber of consecutive invocations. However, all WSML
series exhibit a linear behavior, which gives a first in-
dication that the WSML performs well.

Figure 7 shows the maximum number of invo-
cations that could be executed concurrently without
causing exceptions. We started a maximum number
of 20 simultaneous invocations, because this number



is sufficient to show the differences between the in-
vestigated approaches. We performed each test 10
times, with the number of consecutive invocations ex-
ecuted by the client composition ranging from 1 to
10. The graph shows that the round-robin and broker-
side monitoring tests scaled perfectly, but the server-
side monitoring test started to have lower throughput
when the client composition executed more consecu-
tive invocations. In this scenario, the direct test scaled
perfectly as well, but because it does not perform any
load balancing, its throughput would be lower if more
invocations were to be started simultaneously.

The previously mentioned tests give some initial
indications on the performance and scalability of our
approach. The direct test acts as a reference point
for our measurements: our broker can never perform
better than a broker that does nothing. In order to
obtain an additional reference point and get an ap-
preciation of our performance and scalability in rela-
tion to other state-of-the-art composition approaches,
we re-implemented our three brokering solutions as
BPEL processes and measured their performance and
scalability on a modern BPEL engine, more specifi-
cally the ActiveBPEL 3.0 engine. We do not expect
our results to be representative of all BPEL engines:
we merely selected the ActiveBPEL engine because
it is the most commonly used open-source BPEL en-
gine. Although commercial offerings may have dif-
ferent behavior, the ActiveBPEL engine does put our
approach into perspective. Therefore, Figure 7 and
Figure 8 each contain three additional graphs:2

• aeRR: ActiveBPEL approach with round-robin.
The different versions of the service endpoints
need to be known at design time. This round-
robin implementation just cycles over the list of
service endpoints.

• aeBM: ActiveBPEL approach using broker-side
monitoring. A SOAP handler intercepts all out-
bound service calls. When a synchronous web
service is invoked, the response time is logged.
An internal function, which is used inside the
workflow, will calculate the service rate upon
which the BPEL script will make a decision.

• aeSM: ActiveBPEL approach with server-side
monitoring. The invoked external monitoring ser-
vice randomly generates a value, which will be
used to make the load balancing decision.

The WSML outperforms ActiveBPEL in each of
the test scenarios. The round-robin and broker-side
monitoring series are still linear, but have a much

2The WSML and direct series of Figure 8 are the same
as those of Figure 6, but the scale of the Y axis is different
in order to allow including the ActiveBPEL series.

Figure 8: Response times for the test cases

greater slope than the corresponding WSML scenar-
ios. The server-side monitoring service seems to ex-
hibit exponential behavior. Based on our comparison
of the WSML with a direct approach and a state-of-
the-art composition approach, we can safely conclude
that the performance and scalability of the WSML is
good.

5 RELATED WORK

5.1 QoS Brokering of Web Services

Related work in this area focuses mostly on web ser-
vice brokers limited to service lifecycle management.
There is however a need for service brokers taking
into account QoS in order to ensure total response
time of composed services, prioritize time-critical ser-
vices or ensure bandwidth or robustness. In (Nahrst-
edt and Smith, 1995) a QoS broker model is described
for general distributed systems. Contrary to general
distributed systems, web services have a dynamic na-
ture in terms of service availability and the clients
invoking them. Brokers must support more flexible
service selection and be able to adapt to the dynamic
server load. In (Yu and Lin, 2004) a web service
architecture supporting QoS is presented. However,
once the services are selected and the link is estab-
lished, the client communicates with the server di-
rectly without any broker intervention during the ac-
tual service process. Due to the dynamic nature of
web services, this introduces QoS shortcomings since
abrupt failure or unavailability of services needs dy-
namic selection of another equivalent service. This
broker also leaves composition as the client’s respon-
sibility. In (Benatallah et al., 2003), a middleware in-
frastructure for web service composition named Self-
Serv is proposed. Like the WSML, it facilitates dy-
namic web service selection and composition. Self-



serv introduces two concepts: composite services and
service containers. Composite services can be com-
pared to the WSML’s service compositions, while ser-
vice containers can be compared to the WSML’s ser-
vice types.

5.2 AOP for Web Services

In (Singh et al., 2005), a software architecture called
Aspect-Oriented Web Services (AOWS) is presented.
It is targeted at describing crosscutting concerns be-
tween web services in order to give a more complete
description of the web services, supporting richer dy-
namic discovery and seamless integration. An im-
plementation is made on the .NET platform and all
AOWS subsystems and their relationships have been
formally modeled. While aiming to achieve similar
goals as the WSML, AOWS does not support third-
party independent services as services need to be
modeled in an AOWSDL language, and registered in
a dedicated AOUDDI registry. Clients communicate
with AOConnectors, which address the web services
through adaptors; if necessary multiple services are
bundled in an AOComposite. The aspectual features
of the AOWS framework are used to provide more
efficient and effective dynamic description, discovery
and integration. Similar to the WSML, service related
code is extracted from the client, and the client only
needs to communicate with the AOConnectors.

Contextual Aspect-Sensitive Services (CASS)
(Cottenier and Elrad, 2005) is a distributed aspect
platform that targets the encapsulation of coordina-
tion, activity life cycle and context propagation con-
cerns in service environments. CASS advocates the
decomposition of applications into a set of collabo-
ration layers, next to the well-known class, compo-
nent or service-based decomposition. In a CASS-
enabled service oriented architecture, a collaboration
layer captures the protocols all services should imple-
ment to fulfill an interaction. CASS aspects factor out
the crosscutting concerns that arise when services are
combined into distinct collaboration layers.

The WSML employs aspect-oriented principles in
order to better modularize the different concerns that
make up a service composition. Several approaches
have been proposed which apply aspect-oriented prin-
ciples to BPEL:

AO4BPEL (Charfi and Mezini, 2004) allows spec-
ifying crosscutting concerns in separate aspects. As-
pects contain an advice written BPEL code, and point-
cuts expressed using XPath, which allows expressing
queries on the structure of XML documents. This
may cause pointcuts to break when the structure of
the base BPEL process changes. AO4BPEL does not

have a separate aspect deployment construct, which
makes it impossible to reuse aspects in other pro-
cesses without duplicating code. AO4BPEL uses a
runtime weaver, which is implemented by extending
the BPWS4J engine.

Courbis and Finkelstein (Courbis and Finkelstein,
2005) have proposed an aspect-oriented approach
similar to AO4BPEL. They also use XPath as a point-
cut language, and propose extending a BPEL engine
for supporting dynamic aspect addition and removal.
Advices are expressed using Java instead of BPEL.
There is no publicly available implementation.

Padus (Braem et al., 2006) is an aspect-oriented
approach for BPEL that aims to improve on the two
former approaches by providing a declarative, logic-
based pointcut language which is more robust when
the structure of the BPEL process changes. Aspects
are reusable entities which are bound to a concrete
process using separate aspect deployments. Padus is
implemented as a static weaver which produces stan-
dard BPEL processes which can be executed on any
standard BPEL engine.

5.3 Relation Between BPEL and the
WSML

BPEL and the WSML are complementary ap-
proaches: BPEL offers dedicated support for mod-
eling business logic involving multiple web services
and allows for the centralized deployment of these
service compositions on a dedicated engine. The
WSML on the other hand is specifically targeted at
dealing with dynamic service environments. In the
WSML approach, the actual business process is part
of the client, although it is possible to express more
complicated business process constructs in the as-
pects, including more advanced control flow such
as conditional executions, loops and parallel branch-
ing. Other features such as logging, exception han-
dling, compensation, monitoring and stateful context
are supported through additional aspects. The result
will be a collection of aspects working together to re-
alize a composition. This more modularized approach
differs from dedicated composition languages such as
BPEL where all concerns are scattered and tangled in
one monolithic composition specification.

6 CONCLUSIONS AND FUTURE
WORK

This paper describes how the Web Services Man-
agement Layer (WSML) can be used to express



both pro-active and reactive web service composi-
tions through its dynamic service binding mechanism.
We present the results of a number of experiments
which evaluate the performance and scalability of the
WSML implementation with regard to three broker-
ing strategies: round-robin, broker-side monitoring
and server-side monitoring. Although the WSML in-
duces a small performance overhead, this overhead
is small enough to be compensated by the various
ways in which the WSML relieves web service clients
of complex tasks such as redirection, selection and
client-side management. This makes the WSML a vi-
able option in real-life web services applications.

Although this paper evaluates the performance
and scalability of our approach, future work should be
directed at evaluating the expressiveness of its com-
position mechanism. Existing evaluations of work-
flow languages (Wohed et al., 2003) are often based
on a number of frequently used and required work-
flow patterns (van der Aalst et al., 2000), and a simi-
lar evaluation of our composition mechanism will be
investigated. Based on this evaluation, changes to the
WSML could be required in order to solve possible
shortcomings.

ACKNOWLEDGEMENTS

The research presented in this paper is funded by
the Research Foundation — Flanders (Fonds Weten-
schappelijk Onderzoek — Vlaanderen) in the context
of the DyBroWS project.

REFERENCES

Andrews, T. et al. (2003). Business Process Execution Lan-
guage for Web Services version 1.1.

Benatallah, B., Sheng, Q. Z., and Dumas, M. (2003). The
Self-Serv environment for web services composition.
IEEE Internet Computing, 7(1):40–48.

Braem, M., Verlaenen, K., Joncheere, N., Vanderperren,
W., Van Der Straeten, R., Truyen, E., Joosen, W.,
and Jonckers, V. (2006). Isolating process-level con-
cerns using Padus. Lecture Notes in Computer Sci-
ence, 4102:113–128.

Chakraborty, D. and Joshi, A. (2001). Dynamic service
composition: State of the art and research directions.
Technical Report TR-CS-01-19, Department of Com-
puter Science and Electrical Engineering, University
of Maryland, Baltimore, MD, USA.

Charfi, A. and Mezini, M. (2004). Aspect-oriented web ser-
vice composition with AO4BPEL. Lecture Notes in
Computer Science, 3250:168–182.

Cottenier, T. and Elrad, T. (2005). Dynamic and decen-
tralized service composition with contextual aspect-
sensitive services. In Proceedings of the 1st Inter-
national Conference on Web Information Systems and
Technologies (WEBIST 2005), Miami, FL, USA.

Courbis, C. and Finkelstein, A. (2005). Towards aspect
weaving applications. In Proceedings of the 27th
International Conference on Software Engineering
(ICSE 2005), St. Louis, MO, USA. ACM Press.

Du, W. and Elmagarmid, A. (1997). Workflow manage-
ment: State of the art vs. state of the products. Tech-
nical Report HPL-97-90, Hewlett-Packard Labs, Palo
Alto, CA, USA.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwing, J. (1997).
Aspect-oriented programming. Technical Report
SPL97-008 P9710042, Xerox PARC, Palo Alto, CA,
USA.

Nahrstedt, K. and Smith, J. M. (1995). The QoS broker.
IEEE MultiMedia, 2(1):53–67.

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules. Communications of the
ACM, 15(12):1053–1058.

Singh, S., Grundy, J., Hosking, J., and Sun, J. (2005). An
architecture for developing aspect-oriented web ser-
vices. In Proceedings of the 3rd IEEE European Con-
ference on Web Services (ECOWS 2005), Växjö, Swe-
den. IEEE Computer Society.

Suvée, D. and Vanderperren, W. (2003). JAsCo: An aspect-
oriented approach tailored for component based soft-
ware development. In Proceedings of the 2nd Interna-
tional Conference on Aspect-Oriented Software De-
velopment (AOSD 2003), Boston, MA, USA. ACM
Press.

van der Aalst, W. M. P., Barros, A. P., ter Hofstede, A.
H. M., and Kiepuszewski, B. (2000). Advanced work-
flow patterns. Lecture Notes in Computer Science,
1901:18–29.

Verheecke, B., Cibrán, M. A., and Jonckers, V. (2003).
AOP for dynamic configuration and management of
web services. Lecture Notes in Computer Science,
2853:55–85.

Verheecke, B., Cibrán, M. A., and Jonckers, V. (2004).
Aspect-oriented programming for dynamic web ser-
vice monitoring and selection. Lecture Notes in Com-
puter Science, 3250:15–29.

Verheecke, B., Vanderperren, W., and Jonckers, V. (2006).
Unraveling crosscutting concerns in web services
middleware. IEEE Software, 23(1):42–50.

Wohed, P., van der Aalst, W. M. P., Dumas, M., and ter
Hofstede, A. H. M. (2003). Analysis of web services
composition languages: The case of BPEL4WS. Lec-
ture Notes in Computer Science, 2813:200–215.

Yu, T. and Lin, K.-J. (2004). The design of QoS broker al-
gorithms for QoS-capable web services. In Proceed-
ings of the 2004 IEEE International Conference on e-
Technology, e-Commerce, and e-Services (EEE 2004),
Taipei, Taiwan. IEEE Computer Society.


