
Supporting User-Friendly Composition of Web
Services in the Eclipse Platform

Niels Joncheere, Wim Vanderperren, Mathieu Braem, and Ragnhild Van Der
Straeten

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
Phone: +32 2 629 29 64

{njonchee,wvdperre,mbraem,rvdstrae}@vub.ac.be

Abstract. State-of-the-art workflow languages for web services are much
better suited for web service composition than traditional general-pur-
pose programming languages. Such workflow languages, however, still
require a lot of in-depth technical knowledge. In order to facilitate ser-
vice composition without requiring such in-depth technical knowledge, a
higher level of abstraction is required. We therefore propose a visual ser-
vice composition environment, which allows user-friendly composition of
web services using high-level composition templates, and which supports
aspect-oriented software development. This paper provides an overview
of the Eclipse plug-in that implements this service composition environ-
ment.

Keywords. Aspect-oriented software development, Eclipse, web service
composition

1 Introduction

Over the last years, web services [1] have been gaining a lot of popularity as a
means of integrating existing software in new environments. Basic web services
can be created by exposing existing applications to the internet using XML front-
ends. By composing a number of basic web services, new web services can be
created that provide more advanced functionality. These compound web services
can then be used by other web services, further improving software reusability.

Originally, the only way to compose web services was by manually writing the
necessary glue-code in programming languages such as C and Java. It quickly
became clear, however, that a composition of web services is more naturally
captured by dedicated workflow languages [2] than by general-purpose program-
ming languages. Today, the most popular workflow language with regard to the
composition of web services is the Business Process Execution Language (WS-
BPEL) [3]. WS-BPEL processes are platform- and transport-independent, and
are expressed using XML. Recently, a higher-level visual notation for WS-BPEL,
called the Business Process Modeling Notation (BPMN) [4], has been proposed.



Meanwhile, aspect-oriented software development (AOSD) has been proposed
as a means of improving separation of concerns [5] in software. AOSD is based
on the observation that a number of concerns in software (such as logging [6]
and billing [7]) cannot be modularized using object-oriented software develop-
ment: a program can only be decomposed in one way (i.e. according to the class
hierarchy), and concerns that do not align with this decomposition end up scat-
tered across the program and tangled with one another. This problem is dubbed
“the tyranny of the dominant decomposition” [8]. AOSD allows expressing such
crosscutting concerns in well modularized aspects, so that adding, modifying or
removing such concerns does not require changes to the main program.

Although initial research on AOSD has concentrated on applying its prin-
ciples to the object-oriented programming paradigm, Arsanjani et al. [9] and
others [10–12] have shown that AOSD has a lot of potential in a web services
context, too.

Although workflow languages are better suited for web service composition
than general-purpose programming languages, they still require a large amount
of in-depth technical knowledge. In order to facilitate service composition with-
out requiring such in-depth technical knowledge, a higher level of abstraction is
required. We therefore propose a visual service composition environment (SCE),
which allows user-friendly composition of web services using reusable compo-
sition templates, and which supports encapsulating crosscutting concerns using
AOSD techniques. This environment is implemented as a plug-in for the Eclipse1

platform. The goal of this paper is to provide an overview of the SCE plug-in.
The outline of the paper is as follows: Section 2 provides an overview of the

SCE, Section 3 describes related work, and Section 4 states our conclusions and
future work.

2 The Service Composition Environment

2.1 Main Concepts

The SCE introduces three main concepts:

– Services are the basic building blocks of the SCE. They correspond to
concrete web services. In addition to the usual WSDL [13] API specification,
a service is documented using a WS-BPEL process that specifies the external
protocol the service adheres to (e.g. first expect login, then request).

– Composition templates are used to compose multiple services. They are
abstract descriptions of web service compositions, and may contain one or
more placeholders for services. Composition templates are expressed using
one or more abstract WS-BPEL processes. Service placeholders are unbound
partner links in the WS-BPEL process.

– Aspects encapsulate crosscutting concerns and can be deployed to services
and composition templates. Aspects are implemented using Padus [14], an

1 http://www.eclipse.org/



aspect-oriented extension to WS-BPEL. Section 2.2 provides a brief intro-
duction to Padus.

Figure 1 illustrates how these three concepts are visualized in the SCE. The
SCE retrieves the services, composition templates and aspects that should be
available for composition from a library. The library is organized in categories,
contains additional keywords and a description for each entity, and allows search-
ing for a specific entity.

service

compositionTemplate

<placeholder> <placeholder> <placeholder>

aspect

Fig. 1. SCE visual elements

2.2 Padus: An Aspect-Oriented Extension to WS-BPEL

A detailed explanation of Padus is outside the scope of this paper; the interested
reader can find more information on Padus in the following paper: [14]. Instead,
this section aims to introduce the features of Padus that are most relevant to
the SCE.

Padus is an XML-based language, and introduces two main concepts: aspects
and aspect deployments. An aspect is a reusable description of a crosscutting con-
cern, and contains one or more pointcuts and advice. A pointcut selects interest-
ing points in the execution of the target WS-BPEL process (called joinpoints),
and exposes target objects to the advice. The pointcut language of Padus is a
logic language based on Prolog, and is thus very expressive [15]. The complete
target WS-BPEL process is reified as a collection of facts that can be queried
by the pointcut. The advice language is WS-BPEL, extended with some AOSD-
specific constructs. Another advantage of the Padus language compared to other
aspect-oriented extensions to WS-BPEL (e.g. AO4BPEL [10]) is the introduc-
tion of an explicit deployment construct. This deployment applies one or more
aspects to one or more target WS-BPEL processes. Furthermore, it allows to
clearly specify the composition (e.g. precedence) of the aspects.

The Padus technology is based on a traditional static weaver that processes
the target WS-BPEL processes and generates new WS-BPEL processes contain-
ing the advice code where required. The main advantage of this approach is the
compatibility with existing infrastructure, as the output can be deployed on any
WS-BPEL-compatible engine.



2.3 SCE GUI

The SCE is implemented using the Eclipse Graphical Editing Framework (GEF)2,
which facilitates creating a graphical editor based on a model-view-controller ar-
chitecture.

When the SCE plug-in is loaded in Eclipse, new compositions can be created
and existing compositions can be opened. When a composition is opened, three
views are of importance: the editor view, the outline view, and the properties
view. Figure 2 provides an overview of the SCE plug-in’s interface.

Fig. 2. SCE overview

The editor view (in the middle of the screen) is used to edit compositions, and
consists of two main parts: a large drawing canvas, and a smaller palette. The
palette contains some selection and connection tools, and shows the available
services, composition templates and aspects as they are loaded from the library.
By double-clicking on an entity, the configured editor for that entity is launched
(e.g. a BPMN editor for a composition template).

The outline view (at the right of the screen) shows a tree-based overview
of the state of the composition, and the properties view (at the bottom of the

2 http://www.eclipse.org/gef/



screen) shows the properties of the element that is currently selected in the editor
view or in the outline view.

2.4 Composition

In order to create a composition in the SCE, it suffices to drag a composition tem-
plate on the composition canvas and fill the placeholders with concrete services.
Aspects can be connected to services, meaning that they will only be applied
to these concrete services, or to a complete composition template, meaning that
they will be applied to all the services that take part in this composition.

The composition shown in Figure 2 contains a composition template called
“conferenceCall” with three placeholders. Two services called “agenda” and
“messaging” have been added to the composition template’s placeholders, while
one placeholder is still empty. This placeholder could for instance be filled with
the “b2b” service available in the library. The composition also contains an as-
pect called “billing”, which is connected to the “messaging” service. A service
called “billing” has been added to the aspect’s only placeholder. The result of
this composition is that the conference call application will work using the se-
lected services, and that a billing aspect, which invokes the billing service, is
deployed to the messaging service to bill the messaging actions selected by the
aspect’s pointcut.

2.5 Verification

An important requirement of the SCE is that it guides users in creating valid
compositions without requiring in-depth technical knowledge. The SCE accom-
plishes this by verifying whether compositions are valid while they are created:
when a service is dragged onto a placeholder, the SCE checks whether the ser-
vice’s protocol is compatible with the composition template’s protocol. In case
the service turns out to be incompatible, a report is generated that provides mis-
match feedback to the user. Compatibility checking based on protocols rather
than plain APIs is possible because every service is explicitly documented with
a protocol specification expressed in WS-BPEL.

In literature, a wealth of research exists on the topic of protocol verification
[16–20]. Our verification engine is based on the PacoSuite approach [21], which
introduces algorithms based on automata theory to perform protocol verification.
In order to provide protocol verification in the SCE, the WS-BPEL specifications
of each service, aspect and composition template are translated into deterministic
finite automata (DFA). By applying the algorithms introduced by the PacoSuite
approach, the SCE can decide whether the service’s protocol is compatible with
the composition template’s protocol.

2.6 Code Generation and Deployment

When the composition is complete and validated, the user may choose to gen-
erate the resulting composition and deploy it on a WS-BPEL engine. This will



start the code generation process, which will bind the unbound partner links in
the composition templates. An aspect deployment is automatically generated for
the aspects contained in the composition. The Padus weaver is then employed
to weave the aspects into the resulting WS-BPEL processes based on the aspect
deployment specification.

A resulting composition can also be imported back into the library as a
new service. The generated WS-BPEL process then serves as documentation for
the new service. Apart from specifying a name and some other properties, this
process is also automated.

The SCE also includes a built-in WS-BPEL engine that can be used to im-
mediately execute a resulting composition. This feature is meant to be able to
quickly assess the result rather than to be the real deployment target. We are
currently working on improving the integration of this engine, so that it can be
used as a debugger for compositions by providing feedback directly to the SCE.

3 Related Work

Documenting components with protocol documentation is already well investi-
gated in literature. Campbell and Habermann [16] introduced the idea of aug-
menting interface descriptions with sequence constraints already in 1974. More
recent work includes the Rapide system [17] or the PROCOL system [18]. In
the research area of component based software development, several component
composition environments are available that lift the abstraction level for compo-
nent composition. Yellin and Strom [20], Reussner’s CoCoNut project [19] and
PacoSuite [21] for example also employ automata to document components. Pa-
coSuite is one of the most advanced component composition environments and
supports higher-level component composition based on sequence charts. The
main advantage with respect to the other work on protocol verification is that
PacoSuite supports multi-party connectors, whereas other approaches typically
only support binary connectors. The PacoSuite approach is, however, domain
dependent, and is only targeted at the simple JavaBeans component model.

BPMN is a graphical notation for specifying workflows, and aims to become
the de facto graphical standard similar to WS-BPEL for workflow languages.
BPMN allows for a higher-level graphical notation for processes in comparison
to WS-BPEL, and is in fact complementary to our approach. A BPMN-based ed-
itor that is able to import/export WS-BPEL can for instance be used to edit the
specification of a composition template. As soon as there is a standardized file
format for BPMN, the SCE can also directly support BPMN for the documen-
tation of services and composition templates, instead of or next to WS-BPEL.

4 Conclusions and Future Work

In this paper, we introduce a visual service composition environment that allows
to easily compose new services. Composition templates specify the interaction
of several abstract placeholders in a reusable manner. A service composition is



created by visually binding the placeholders with concrete services. The SCE
also supports crosscutting concerns encapsulated using Padus aspects: they can
be visually deployed onto services or composition templates. The SCE allows to
automatically verify a composition based on the API and protocol specification
of the services, aspects and composition templates. Code that realizes the com-
position can be automatically generated. The result is again a service expressed
using WS-BPEL that can be deployed on any WS-BPEL-compatible execution
engine.

Currently, the library of available composition templates, services and aspects
is a custom solution and limited to local files. In the future, we plan to investigate
support for the industrial standard for discovery of web services called UDDI3.

In related research [22], we define a concern-specific language (CSL) for the
billing concern. We are exploring the possibility of integrating this CSL or its
graphical representation in the SCE.

Acknowledgements

This research is partly funded by Alcatel Belgium and the Institute for the
Promotion of Innovation Through Science and Technology in Flanders (IWT-
Vlaanderen) through the WIT-CASE project.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V., eds.: Web Services: Concepts,
Architectures and Applications. Springer-Verlag, Heidelberg, Germany (2004)

2. Du, W., Elmagarmid, A.: Workflow management: State of the art vs. state of the
products. Technical Report HPL-97-90, Hewlett-Packard Labs, Palo Alto, CA,
USA (1997)

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, version 1.1 (2003) http://www.

ibm.com/developerworks/library/ws-bpel/.
4. White, S.A.: Business Process Modeling Notation (BPMN), version 1.0 (2004)

http://www.bpmn.org/.
5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Comm. ACM 15(12) (1972) 1053–1058
6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:

An overview of AspectJ. In Knudsen, J.L., ed.: Proc. ECOOP 2001, LNCS 2072,
Berlin, Springer-Verlag (2001) 327–353

7. D’Hondt, M., Jonckers, V.: Hybrid aspects for weaving object-oriented function-
ality and rule-based knowledge. In Lieberherr, K., ed.: Proc. 3rd Int’l Conf. on
Aspect-Oriented Software Development (AOSD 2004), ACM Press (2004) 132–140

8. Ossher, H., Tarr, P.: Using subject-oriented programming to overcome common
problems in object-oriented software development/evolution. In: Proc. 21st Int’l
Conf. on Software Engineering, IEEE Computer Society Press (1999) 687–688

3 http://www.uddi.org/



9. Arsanjani, A., Hailpern, B., Martin, J., Tarr, P.: Web services: Promises and
compromises. Queue 1(1) (2003) 48–58

10. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In Zhang, L.J., ed.: Proceedings of the 2nd European Conference on Web Services
(ECOWS 2004), Erfurt, Germany, Springer-Verlag (2004) 168–182

11. Cottenier, T., Elrad, T.: Dynamic and decentralized service composition with Con-
textual Aspect-Sensitive Services. In: Proceedings of the 1st International Confer-
ence on Web Information Systems and Technologies (WEBIST 2005), Miami, FL,
USA (2005)

12. Verheecke, B., Vanderperren, W., Jonckers, V.: Unraveling crosscutting concerns
in web services middleware. IEEE Software 23(1) (2006) 42–50

13. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL), version 1.1. W3C Note 15 March 2001, World Wide
Web Consortium (2001) http://www.w3.org/TR/wsdl.

14. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten,
R., Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using
Padus. In: Proceedings of the 4th International Conference on Business Process
Management (BPM 2006), Vienna, Austria, Springer-Verlag (2006) (to appear).

15. Gybels, K., Brichau, J.: Arranging language features for pattern-based crosscuts.
In Akşit, M., ed.: Proc. 2nd Int’l Conf. on Aspect-Oriented Software Development
(AOSD 2003), ACM Press (2003) 60–69

16. Campbell, R., Habermann, A.: The specification of process synchronisation by
path expressions. In: Proceedings of an International Symposium on Operating
Systems. (1974)

17. Luckham, D., Kenney, J., Augustin, L., Vera, D., Bryan, D., Mann, W.: Specifi-
cation and analysis of system architecture using Rapide. IEEE Transactions on
Software Engineering 21 (1995)

18. van den Bos, J., Laffra, C.: PROCOL: A concurrent object-oriented language with
protocols delegation and constraints. Acta Informatica 28 (1991) 511–538

19. Reussner, R.H.: Automatic component protocol adaptation with the CoCoNut
tool suite. Future Generation Computer Systems 19(5) (2003) 627–639

20. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems 19(2) (1997) 292–333

21. Wydaeghe, B.: PacoSuite: Component Composition Based on Composition Pat-
terns and Usage Scenarios. PhD thesis, System & Software Engineering Lab, Vrije
Universiteit Brussel, Brussels, Belgium (2001)

22. Braem, M., Joncheere, N., Vanderperren, W., Van Der Straeten, R., Jonckers, V.:
Concern-specific languages in a service creation environment. In: Proceedings of
the 2nd International Workshop on Aspect-Based and Model-Based Separation of
Concerns in Software Systems (ABMB 2006), Bilbao, Spain, Elsevier (2006) (to
appear).


