

Prom

Copr

CSL

moter: Pr

romotor: D

 N

FACU

ACC

L2PADU

rof. Viviane

r. Wim Van

iels Jonche

ULTY OF

CESS CO

US TRA

Shao

Academic

e Jonckers

nderperren

ere

APPLIED

ONTROL

ANSFORM

nan WAN

c Year: 2006

The

of t

degr

D SCIENCE

L CSL &

M FRAM

NG

- 2007

esis submitt

the requirem

ree of Appl

ES

&

MEWORK

ted in partia

ments for t

lied Compu

K

al fulfillmen

the Master

uter Science

nt

r's

e.

P a g e | 2

Abstract

The traditional workflow and business process modeling languages suffer from
two problems in providing users an easy to use environment: lack of support for a visual
creation environment and poor modularization of crosscutting concerns.

At the SSEL lab, two approaches are proposed to address the identified problems in
current workflow languages, namely Padus and the SCE.

Padus is an aspect-oriented extension for BPEL in order to modularize crosscutting
concerns in WSBPEL.

The Service Composition Environment (SCE) provides a plug-and-play service
composition environment that guides the user to a valid composition.

However, Padus aspects are still relatively low-level and are difficult to develop and
understand for non-programmers. Therefore, we propose to use higher-level concern
specific languages (CSL) that each target one concern.

As an example CSL, we propose a role based access control language.

Additionally, we introduce a generic transformation framework to
transform any CSL program into executable Padus aspects and we provide an example
application of the framework for the role based access control CSL.

P a g e | 3

Acknowledgement

This thesis is a big challenge for me, and without the help from the following

people, it would be impossible to be finished. I’d like to say thank you to:

• Prof. Dr. Viviane Jonckers, from whom I learn both the knowledge and the

spirit of computer science;

• Dr. Wim Vanderperren, for giving me the opportunity to do my thesis in

SSEL lab, and leading me to access the research world;

• Niels Joncheere, for his detailed explanations for specific technology

questions I’ve met;

• Other members in SSEL lab, for their advises whenever I need help;

And after all, I should thank my father, for his unlimited love and support.

P a g e | 4

Table of Contents

Abstract ... 2

Acknowledgement .. 3

List of Figures ... 7

List of Code Fragments .. 8

1 Introduction .. 9

1.1 Motivation ... 9

2 Research Context ... 12

2.1 Web Services Technologies .. 12

2.1.1 What are web services? .. 12

2.1.2 How do web services work? .. 12

2.1.3 Foundation protocols: SOAP, WSDL, UDDI 13

2.1.4 SOAP .. 15

2.1.5 Web service description language (WSDL)....................................... 16

2.2 Workflow Languages .. 18

2.2.1 Business Process Modeling .. 18

2.3 Service-Oriented Architectures: Orchestration and Choreography 19

2.3.1 WS-BPEL ... 21

2.4 Aspect-Oriented Programming ... 24

P a g e | 5

2.4.1 Motivation of AOP ... 24

2.4.2 AspectJ ... 25

2.4.3 Aspect Weaving ... 27

2.5 AOP and Workflow Languages .. 29

2.5.1 Motivation .. 29

2.5.2 Aspect-Oriented workflow languages .. 30

2.5.3 Padus .. 31

2.5.4 Concern Specific Language ... 32

2.5.5 Visual Web Service Creation Environment 34

3 Access Control Concern Specific Language ... 37

3.1 Design of Enterprise Role Based Access Control Language 37

3.1.1 Introduction to Role Based Access Control 37

3.1.2 Access Control Concern Specific Language 39

3.2 Padus Implementation ... 41

3.3 XSLT transformation .. 43

4 CSL to Padus Transforming Framework ... 45

4.1 Transformation .. 46

4.2 Validation .. 46

P a g e | 6

5 Conclusion ... 48

Bibliography ... 49

P a g e | 7

List of Figures

Figure 1 web services stack .. 13

Figure 2 Web Service Core Specifications ... 14

Figure 3 SOAP Envelope ... 15

Figure 4 WSDL Component ... 16

Figure 5 Screenshot of the SCE's interface .. 35

Figure 6 A composition with a concern-specific language 36

Figure 7 A RBAC model .. 38

Figure 8 Access Control CSL to Padus Aspects Transformation 39

Figure 9 Access Control CSL model .. 40

Figure 10 CSL to Padus Transformer class diagram .. 46

Figure 11 CSL syntax validation class diagram ... 47

P a g e | 8

List of Code Fragments

Code 1 An aspect in AspectJ .. 26

Code 2 Billing CSL example .. 34

Code 3 Access Control Concern Specific Language.. 40

Code 4 Padus Implementation for Admin Service Access Control 42

Code 5 XSLT transform file ... 44

P a g e | 9

1 Introduction

1.1 Motivation

Over the last years, web services (1) have gained a lot of popularity in both

academics and industry as a technology that promotes the reuse of software

applications at the service level, independent of underlying programming

languages and system platforms. For example, web services enable a C#

application based on the .NET platform to communicate with a Java application

based on the J2EE platform.

The true value of web services lies in the dynamic cooperation of individual web

services. Current workflow or business process modeling technologies (2) involve

two styles of web service cooperation: orchestration and choreography. The

orchestration style composes existing web services in order to achieve more

advanced functionality and exposes the resulting composition as a new service,

which can be composed recursively. The term orchestration refers to the fact that

the cooperation of the different services is governed by a central composition,

similar to the role of a conductor in a symphonic orchestra. On the other hand, the

choreography style describes a predefined peer-to-peer protocol between the

different services. All services are equal and communicate with each other in

accordance with the protocol. The term choreography stems from dancing

terminology, where it implies that dancers dance while adhering to a global

scenario without a single point of control.

BPEL (3) is currently the de facto standard for web service orchestration, and is

based on the XML and WSDL standards. It provides a small but powerful

P a g e | 10

language for process-oriented programming. There are, however, two main

drawbacks from a usability perspective.

The first drawback is that BPEL suffers from poor separation of concerns: each

process is implemented using one monolithic specification, and certain concerns

of the process do not align with the main logic of the process, but end up scattered

across the process and tangled with one another. This makes it difficult to add,

remove or maintain these concerns. These concerns are called crosscutting

concerns, and typical examples include access control and billing. Because of this

drawback, processes become complex and inflexible, while fierce market

competition increases the need for agile solutions.

The second drawback is that BPEL does not have a standardized visual notation.

BPEL is merely an XML language and requires a certain amount of in-depth

knowledge in order to compose web services. This makes it difficult to react to

changing markets because business experts are are not sufficiently involved in

business process modeling.

Previous research (4) (5) (6) (7) has applied aspect-oriented programming to

workflow languages in order to improve separation of concerns in business

process modeling. Aspect-oriented languages can be classified into two categories

according to the way in which crosscutting concerns are applied to the application.

Dynamic languages can add, remove or modify crosscutting concerns at runtime,

but require a dedicated runtime platform and are thus less compatible with the

existing tool chain. Additionally, dynamic languages tend to have more runtime

overhead. On the other hand, static languages operate at compile time, and require

restarting the application each time a concern is added, removed or modified. They

typically have less runtime overhead. The ideal choice between these two

categories depends on the specific application requirements.

P a g e | 11

Padus (4) is a static aspect-oriented language for BPEL that allows crosscutting

concerns (such as access control and billing) to be specified separate from the

main control flow of the process. In order to facilitate web service composition by

developers that lack indepth knowledge of BPEL or Padus, a visual Service

Creation Environment (SCE) (8) has been proposed which allows expressing

concerns using dedicated Concern Specific Languages (CSLs). The SCE provides

a graphical interface for expressing web service compositions while supporting

modularization of crosscutting concerns. The SCE consists of three main

components: a services repository that contains the web services that can be

composed, a composition templates repository that contains a set of abstract web

service compositions, and a crosscutting concerns repository that contains the

Padus or CSL implementations of a set of crosscutting concerns. New web service

compositions can be created by visually connecting elements from these

repositories on a canvas.

This thesis proposes a role based access control CSL that aims to address process

level access control in the telecom community. In order to facilitate the

integration of CSLs into the SCE, this thesis also proposes a CSL to Padus aspect

transformation framework implemented using Java.

The structure of this thesis is as follows: chapter 2 introduces the research context

of this thesis, including web services technology, workflow and business process

modeling, aspect-oriented programming, aspect-oriented workflow languages,

Padus, CSLs and the SCE. Chapter 3 presents the design and implementation of

our role based access control CSL. Chapter 4 presents the CSL to Padus

transformation framework, and chapter 5 states our conclusions.

P a g e | 12

2 Research Context

2.1 Web Services Technologies

2.1.1 What are web services?

(9) defines a web service as a software system designed to support interoperable

machine-to-machine interaction over a network. In other words, web services

allow applications from different platforms, written in different programming

language to communicate with each other.

2.1.2 How do web services work?

2.1.2.1 XML and web services

Web services communicate with each other using XML message by interrelated

protocols. XML itself is used to describe data in a platform, language independent

way. As a result, web services, which building on top of XML, provide a protocol

framework to connect service providers and consumers of different platforms.

2.1.2.2 Web service stack

P a g e | 13

Figure 1 web services stack

The interrelated modular protocols standardize all aspects of the web services

XML message communication, ranging from messaging, service description,

publication, discovery to security, reliability, business processes, etc...Figure 1

web services stack, adopted from (10), is a web services stack that illustrates the

web service specification framework. Messaging protocol, service description

protocol, publication and discovery protocol form the foundation layer of web

service framework. More advance protocols are built on top of the foundation

layer, to standardize extra aspects of web services.

2.1.3 Foundation protocols: SOAP, WSDL, UDDI

While this thesis is written, higher level protocols in the web services stack are

still being proposed, some proposals are even competing with each other. To

improve the web services interoperability, Web Services Interoperability

Organization (WS-I) (11) publishes WS-I profiles to guide developing

interoperable web services. A profile is a set of specifications at a specific level

with guidelines and conventions for using the specifications together. WS-I basic

P a g e | 14

profile 1.0 (12) includes SOAP 1.1, WSDL 1.1, UDDI 2.0, XML 1.0, XML

Schema and HTTP 1.1. Even thought there are alternatives protocols, SOAP,

WSDL and UDDI are widely accepted in industry, SOAP and WSDL are even

mandatory specifications in WS-I.

Figure 2 Web Service Core Specifications

SOAP (13) is the foundation layer protocol to transport XML-based messages

through the internet, and it’s usually bound to http protocol. Web Services

Description Language (WSDL) (14) is an XML based language which provides a

service level interface to describe the functions this service without underlying

implementation information. UDDI (15) is a service broker where services

providers can register themselves in and services consumers can find services they

need. Figure 2 Web Service Core Specifications (16) shows how SOAP, WSDL

and UDDI can cooperate with each other to achieve the interoperability between

applications of different platform or programming language. Service providers

register to UDDI with description of their serivces in the form of WSDL, while

service rquesters send their require of the services also in the form of WSDL.

When UDDI finds a matching service provider, UDDI will send the matching

WSDL to the service requester. With the information provided by matching

WSDL, the service requester can begin to communicate with the service provider

d

in

2

S

ar

p

ex

d

w

in

co

p

directly wit

ntroduction

2.1.4 SOA

SOAP, ever

rchitecture

rovides the

xchanging

distributed e

wraps the X

nformation

ommonly

rotocols. It

th SOAP

 to most wi

AP

r known as

protocol,

e definition

structured

environmen

ML messag

like contex

bound to

can also be

protocol.

idely accept

Figur

s simple ob

and now j

n of the X

and typed

nt. As show

ge to be sen

xt, authenti

HTTP, SO

e bound to S

A

The follo

ted SOAP a

e 3 SOAP E

bject acces

just as SO

XML-based

informatio

wn in Figur

nt into an en

cation, and

OAP is in

SMTP or X

SOAP Envelo

pplication Se
XML Messa

wing secti

and WSDL

Envelope

ss protocol,

OAP withou

informatio

on between

re 3 SOAP

nvelope wit

d manageme

ndependent

XMPP for ex

ope

epcific
ge

ions give

specificatio

, later as s

ut any acro

on which c

n peers in a

Envelope,

th a header

ent. Even th

t of under

xample.

P a g e

more det

ons.

service orie

onym mean

an be used

a decentral

a soap mes

r with additi

hough SOA

rlying tran

 | 15

tailed

ented

ning,

d for

lized,

ssage

ional

AP is

sport

2

G

w

W

re

se

T

d

p

A

m

m

fu

T

sp

2.1.5 Web

Given SOAP

web service

WSDL vers

ecommenda

ection.

To improve

describe the

rovide serv

As shown

message typ

messages th

unctions ser

The concrete

pecifies ho

b service d

P provides

description

sion 1.1 ha

ation, we w

the reusabi

e reusable

vice specific

in Figure

pes and int

he service

rvice will p

e descriptio

ow to acces

descriptio

Figure

a message

n language

as not bee

will follow th

ility, a WSD

part of a s

c informatio

4 WSDL

terface. Me

will send

provide.

on is describ

ss the servi

W

A

•
•

Co

•b
•s

on langua

4 WSDL C

communica

(WSDL) d

en endorsed

he syntax o

DL descript

service des

on.

Componen

essage type

and receiv

bed by bind

ice, such a

WSDL Desc

Abstract

•message typ
•interface

oncrete

binding
service

age (WSD

Component

ating struct

describe the

d by W3C

of WSDL ve

tion consist

scription an

nt, the abs

e’s compon

ve; interfac

ding and se

as the proto

cription

pes

DL)

t

ture betwee

e web servic

C, while ve

ersion 2.0 in

ts of abstrac

nd concrete

stract comp

nent describ

e describes

ervice comp

ocol to tran

P a g e

en web serv

ces itself. S

ersion 2.0

n the rest of

ct compone

e componen

ponents inc

bes the kin

s what abs

ponent. Bin

nsport mess

 | 16

vices,

Since

is a

f this

ent to

nt to

clude

nd of

stract

nding

sage,

P a g e | 17

which is usually SOAP, and also the concrete message type. Service component

describes where to access the service, most importantly, physical address of the

service.

There are also other components besides the above mentioned elements, for

example, documentation component provides more application-level requirements

for the use of the service; fault component is used to describe the exceptional

situation; import and include component help to promote reuse of service

descriptions. For more detailed information about WSDL version 2, please refer to

(14).

P a g e | 18

2.2 Workflow Languages

2.2.1 Business Process Modeling

To understand business process modeling, we need first to understand what a

business process is. A business process is a set of interrelated tasks to fulfil a goal

in an enterprise, usually with well-defined inputs and outputs. A business process

describes what happens and how it happens in an enterprise activity. Business

process modeling is to provide a type level description of the business processes of

the same nature, so that business analysts and managers can study the business

processes to improve the efficiency of enterprise activities. Workflow is a closely

related concept to business process modeling. Workflow has existed decades

before the term of business process modeling comes into exist. Workflow is used

to refer to the subject now is called business process modeling. There is a subtle

difference between workflow and BPM. According to (2), workflow is an IT

technology that uses electronic systems to manage and monitor business

processes.

Either BPM or Workflow software, the two main purposes are to model the actual

enterprise activities, and to change the processes of the activities to be more

efficient and put the changes into practice. Firstly, modeling the business

processes involves presenting the activities in an enterprise as loosely couple

services, and linking the services together to achieve more advanced functions.

With the wide acceptance of Web Services standards in industry, service oriented

architecture has gained a lot of popularities recently. Secondly, improving

business processes and putting the change into practice also become much easier

with Web Services. Business Process Executable Language (BPEL) is language

based on web services technology that can generate business process fully

P a g e | 19

executable. The following sections will first introduce service-oriented

architecture, and then explain BPEL language in more detail.

2.3 Service-Oriented Architectures: Orchestration and

Choreography

Service oriented architecture (SOA) is a natural evolution of software engineering

development. During the last few decades, with the development of software

engineering, the granularity of software reusability has kept increasing from

procedure-oriented, object-oriented to component-oriented. SOA provides an even

more dynamic and flexible reuse solution by separating concerns into loosely

couple services and standardized interfaces for the services to communicate with

each other without the foreknowledge of the underlying platform and

programming language. In a service oriented architecture, a service written in Java

in J2EE platform can consume a service written in C# in .Net platform.

SOA is an information systems architecture style that doesn’t constrain to a

specific implementation technologies. Although REST, RPC, DCOM, CORBA

Web Services and WCF can all implement SOA, the advent of Web Services has

greatly popularized SOA, and Web Services is the most widely accepted

technology to implement an SOA.

There are two structural styles to link services together in SOA: Orchestration and

Choreography.

In Orchestration composition style, there is a central control service which gives

orders to the other services about what to do and when to do it, just like a

conductor in an orchestra; choreography style provides a contract about message

P a g e | 20

exchanging ordering rules which all the services must follow to communicate with

each other, just like dancers with a choreography which has been agreed upon

before.

The main characters of orchestration are:

1. Executable: Orchestration tells the services exactly what to do, so

orchestration workflow languages are usually executable.

2. Recursive composition: Orchestration is often referred to as a recursive

composition of services, since it’s all about composition the existing

services and exposing the result as a new service.

3. Business Process Execution Language (BPEL) (3): BPEL is the de facto

language in industry to implement orchestration style SOA.

The main features of choreography are:

1. Descriptive: Choreography considers the communications between services

in terms of observable messages, and it describes the ordering rules for the

messages. Although not executable, with all the services follow the same

ordering rules, choreography can generate business process depending on

the dynamic situation of services communication.

2. Peer to peer collaboration: all the services respect the same contract to

communicate with each other, there is no a super service which has more

power than the others.

3. Web Services Choreography Description Language (WS-CDL) (17): WS-

CDL is the state of art choreography language.

The relationship between orchestration and choreography is complementing rather

than competing. (18) has pointed out that one can realize an SOA with WS-CDL

P a g e | 21

as a blueprint to link islands of orchestration BPEL processes. Even though both

BPEL and WS-CDL are of their value, for the timing being of writing this thesis,

BPEL is still de facto workflow language to implement SOA. Our research is

based on BPEL, so the next section will introduce more details of BPEL.

2.3.1 WS-BPEL

BPEL is an orchestration language based on XML and WSDL to model executable

business processes by composing existing services into a more advanced service.

BPEL models business processes from the perspective of web services

composition through a set of well- defined activities. There are two categories of

activities in BPEL: basic and structural. Basic activities are elementary steps of

process behavior, while structured activities model control-flow logic that

composes the basic activities or other structured activities.

Some examples of the basic activities as explained in (3) are:

• <invoke> activity is typically used to invoke an operation of a service

described with WSDL.

• <recieve> and <reply> activities are used to provide services to the service

consumer.

• <throw> activity is used to specify an internal fault explicitly.

• <wait> activity specifies a delay for a certain period of time or until a

certain deadline is reached.

• <exit> activity is used to immediately end the business process instance.

Examples of structured activities of BPEL from (3) are:

P a g e | 22

• <sequence> activity contains one or more activities that are performed

sequentially, in the lexical order in which they appear within the

<sequence> element.

• <if> activity provides conditional behavior.

• <while> activity provides for repeated execution of a contained activity.

• <repeatUntil> activity provides for repeated execution of a contained

activity.

• <pick> activity waits for the occurrence of exactly one event from a set of

events, then executes the activity associated with that event.

• <flow> activity provides concurrency and synchronization.

• <forEach> activity will execute its contained <scope> activity exactly N+1

times where N equals the <finalCounterValue> minus the

<startCounterValue>.

Besides the activities, BPEL also has other notation to facilitate modeling business

processes, such as partner link type, partner link and endpoint to model the

relationship between two communicating services; variable and message for data

handling; scope for compensation handler, fault handler, termination handler and

event handler, etc...

While BPEL plays the role of de facto technology to model business process in

industry, Business Process Modeling Notation (BPMN) (19) has been proposed.

Rather than modeling business process in an XML based language, which requires

in-depth knowledge about the related technology before developing real

application as BPEL does, BPMN is a standardized graphical notation to draw

business processes in a workflow. Even though BPMN is intended to cooperate

with BPEL to provide a user-friendly interface to model business processes, the

fundamental difference underlying the two technologies makes it very difficult to

P a g e | 23

convert BPMN diagrams to human readable BPEL processes. BPMN is in fact

also helpful to our research, since we provide a visual service creation

environment similar to BPMN diagrams. More introductions to the visual service

creation environment will be given in later sections.

P a g e | 24

2.4 Aspect-Oriented Programming

2.4.1 Motivation of AOP

Aspect-oriented programming (AOP) is programming paradigm in software

engineering to address the modularization of crosscutting concerns in object-

oriented software development.

Object-oriented paradigm contributes to separating concerns by modularize

different concerns in entities like packages, classes and methods, thus greatly

improve the reusability of applications and develop efficiency, since when one

concern needs changing, only the corresponding application entity needs to be

changed while the other entities can remain the same.

While OO concept has greatly improve the reusability of software applications,

not all concerns can be modularized in one entity within the object-oriented

paradigm. Logging is a typical example of crosscutting concern, which entails

scattering all over the classes that need to be logged while the other concerns are

tangled with logging concern. A change in logging concern leads to change all the

classes to be logged, and when other concerns need changing, developer must

understand the logging concern first to make the change. Billing and access

control are also examples of crosscutting concerns: billing in telecommunication

industry is often tangled with other business logic concerns such as pricing policy,

service duration and the customer allocation; access control is a security concern

scattered application systems to make sure the user has the authentication before

confidential operations are executed.

P a g e | 25

In object-oriented paradigm, crosscutting concerns have greatly increased the

complexity of software applications and made changes difficult to implement.

Aspect-Oriented Programming complements object oriented programming by

providing a new construct to modularize crosscutting concerns called aspect,

working together with classes in object-oriented paradigm to modularize normal

concern, thus improves the separating of concerns in software engineering

development.

AspectJ is an aspect oriented extension language for JAVA, and it’s also the most

popular general-purpose AOP language. The following sections will take AspectJ

as an example to introduce AOP language in more details and then briefly

introduce aspect language implementation technologies: aspect weaving.

2.4.2 AspectJ

Aspect-Oriented Programming language applies joint point model to crosscutting

concern by adding extra behavior at certain points of the base object oriented

program. Three main elements of a join point model are joinpoint, pointcut and

advice.

The certain execution point in the base program where extra behavior is added is

called a join point. AspectJ join point model provides a variety of join points such

as method or constructor call or execution, the initialization of a class or object,

field read and write access, exception handlers.

Pointcut is a set of join points defined by pointcut designators. A pointcut defines

when the extra behavior in an aspect should happen. Some examples of AspectJ

pointcut from (20) are as following:

P a g e | 26

• get(Signature) every reference to any field matching Signature

• this(Type or Id) every join point when the currently executing object is

an instance of Type or Id's type

• cflow(Pointcut) every join point in the control flow of each join point P

picked out by Pointcut, including P itself

• Pointcut0 && Pointcut1 each join point picked out by both Pointcut0 and
Pointcut1

While a pointcut defines when extra behavior should happen, an advice defines

what the extra behavior is. There are three kinds of advices in AspectJ: before,

after and around. As suggested by the names, an advice adds extra behavior before

or after the joinpoints picked up by the pointcut, or in case of around, replaces the

original behavior.

Besides join point model, AspectJ also provides inter-type declarations which

allow aspect define new members within other classes. (20) shows an example

how to use inter-type declaration in AspectJ:

 aspect A {

 private interface HasName {}

 declare parents: (Point || Line || Square)

implements HasName;

 private String HasName.name;

 public String HasName.getName() { return name; }

 }

Code 1 An aspect in AspectJ

P a g e | 27

2.4.3 Aspect Weaving

Aspect weaving refers to applying aspects to bases classes to realize the

crosscutting behaviors addressed by the aspects. Static weaving and dynamic

weaving (21) are the two approach of aspect weaving.

Static weaving applies aspects to the base program at compile time or load time.

This approach firstly identifies all the possible join points at compile time, and

then either adds the advice functions to these join point at compile time or at load

time if the advice behavior depends on the information available only at load time.

AspectJ is an example language implemented by static weaving. Static weaving

provides a speed performance comparable to the traditional. Static weaving

requires no changing in Java virtual machine, thus produces speed performance

comparable with that of the original application, and good compatibility with the

platform and environment of the base language. The disadvantage is that since all

aspect related behavior is integrated into the base program before runtime,

crosscutting functionalities and normal functionalities cannot be identified

dynamically while the application is running. This disadvantage greatly restricts

the AOP applications in the run-time and long running systems.

Dynamic weaving affects the base program at runtime by adapting the virtual

machine to be aspect aware. With this approach, aspects can be woven or

unwoven at runtime, thus makes changing crosscutting behavior on the fly

possible. Several dynamic AOP languages have been proposed like PROSE

(22)and JAsCo (23). Even though dynamic AOP supports woven, unwoven and

replace AOP at runtime, there are some side effects like performance overhead,

insecurity and compatibility with the base language platform. Insecurity issue

concerns about the possibility to add malicious advices at runtime. Dynamic

P a g e | 28

weaving decreases the compatibility of the AOP application because it’s

unavoidable to update the virtual machine to be aspect-aware.

P a g e | 29

2.5 AOP and Workflow Languages

2.5.1 Motivation

With widely acceptance of web services technology and Service Oriented

Architecture to implement enterprise business process management systems, there

is rising demand to improve the existing workflow language. Two problems of

current solution for services composition are static selection of web services and

poor modularizing crosscutting concerns in procedural oriented programming.

Web services and SOA advocates service level programming independent of the

underlying software platform or programming language. Web Services describe

the services with the uniform interface, WSDL, and orchestration workflow

languages like BPEL compose the interfaces of the services to produce more

advanced functionality. Since the BPEL communicates with web services through

WSDL interfaces, any services implementing the interface can be used to realize

SOA business process. There can be different services implement the same

interface, BPEL uses static binding to choose which implementation for a service

interface, which means the process needs stopping when change to another

implementation, thus it’s unaffordable for long running process to change the

binding services, even though in real world, new services are published and odd

ones disappear quite often.

Another problem in current service composition is poor modularizing crosscutting

concerns in orchestration services composition. Two subclasses of crosscutting

concern have been identified: procedural level and service level. The original AOP

research is focused on object-oriented paradigm where crosscutting concerns

tangled and scattering all over the normal concerns. Procedural-oriented

P a g e | 30

programming, however, also suffers from the crosscutting concerns. For instance,

in the case of telecom system, nearly every process begins with an authentication

activity to check if the customer has the right to invoke the following service, thus

the authentication concern are scattered all over the application; while billing

concern frequently involves check the duration of the usage of certain service, and

the pricing policies, thus billing is tangled with many other concerns in the system.

Service level crosscutting concerns involves the crosscutting concerns generic to

all the services like billing, transaction, selection, and caching.

2.5.2 Aspect-Oriented workflow languages

To address the above mentioned problems, several AOP approaches have been

proposed including Padus (4), WSML (7), AO4BPEL (5) and Towards Aspect

Weaving Applications (6). Padus, which is the base of this thesis work, is an

aspect-oriented workflow language addressing the process-level crosscutting

concern. As a static AOP approach, an obvious advantage of Padus is good

compatibility with the existing tool chains. The following section will give a

detailed introduction to Padus. Web service management layer (WSML) is a

dynamic aspect-oriented middleware framework between the web services and

web services composition client. WSML addresses the service-level crosscutting

concerns and just-in-time web service selection and integration. WSML and Padus

are complimentary with each other. AO4BPEL is a dynamic aspect-oriented

extension for BPEL trying to address all the problems above. Besides the

compatibility limit which requires an aspect-aware BPEL engine, the lower level

pointcut described by Xpath language is also less expressive compared with the

dedicated logic pointcut language of Padus.

P a g e | 31

2.5.3 Padus

Padus is an aspect-oriented extension for BPEL to address the procedural level

crosscutting concerns especially in the context of Telecom Company. Given the

requirement of speed performance and compatibility with the existing tool chains,

Padus takes a static approach for weaving. For the join point model, Padus applies

logic meta-programming (24) (25) to the pointcut language.

Corresponding to the two categories of activities of BPEL, there are two kinds of

joinpoint in Padus: behavioral joinpoints and structural joinpoints to identify the

particular execution point in a BPEL process. For example, the “invoking”

behavioral joinpoint aims to identify the “invoke” activity in BPEL process. The

properties of a joinpoint are associated with the attributes or elements of the

corresponding BPEL activity. For example, in Padus, the “invoking” joinpoint can

have properties such as name, partnerLink, prototype, operation, input Variable,

outputVariable to recognize the “invoke” activity of BPEL with the corresponding

attributes.

The pointcut language specifies a collection of joinpoints where advance shall be

applied by either binding the attributes of the joinpoint with concrete predicates of

the desired execution points, or restricting additional properties of joinpoints such

as the process or process instance a joinpoint occurs in.

The advice language of Padus can insert BPEL activities into the execution point

of the base process specified by the pointcut language. Beside the traditional

before, after and around advice, Padus also defines an “in” construct to add

additional behavior such as a concurrent activity in a flow activity. Even though

the in construct can be realized by around advice sometimes, this will produce

significant code duplication.

P a g e | 32

Padus aspect module includes the above mentioned pointcut language to identify

where in the core processes changes need to happen, and advice language to

specify what change should be made. In addition, there are also infrastructures to

facilitate reuse the aspect definition, such as “using” declaration and abstract

advice, pointcut definitions.

Aspect deployment language of Padus has two functions: aspect instantiation and

aspect composition. Aspect instantiation defines the Padus aspects should apply

on which base processes, while aspect composition defines the order priority of

the different aspects if this aspect should apply to the same joinpoint in the

execution.

With the above described Padus language, the procedural level crosscutting

concern in the orchestration business process modeling can be effectively

modularized, thus, the complexity of the business process model can be

significantly decreased, and the IT infrastructure become more agile to the ever

changing demand from the fierce market competition. However, the trade-off of

the advantage of Padus is that the business process developers need an in-depth

knowledge of Padus as well as the underlying BPEL processes to make any

change on the business process model. This is contradicting to our goal to be easy

to maintain and user friendly. The following sections will introduce the

complementary researches based on Padus to achieve a more user-friendly

interface to apply Padus into practice.

2.5.4 Concern Specific Language

As explained in previous section, Padus is a general-purpose aspect-oriented

workflow language, which means Padus is a powerful expressive language

capable of dealing with generic problems in the context of procedural level

P a g e | 33

crosscutting concerns. However, to fit Padus better in the business process

modeling context where easy to use and agile to the ever-changing market

environment is the essential element, concern specific languages (CSL) based on

Padus are proposed to assist constructing a user-friendly process composition

environment.

According to the scope of problems a programming language aims to solve, we

can categorize two classes of languages: general-purpose language and domain

specific language (26). General-purpose language provides a general solution to a

wide range of problems in certain area, such as Java and UML. However, this kind

of solution may be suboptimal. Domain specific language focuses on a specific

domain, and provides more powerful tools to solve a specific problem. (27) gives

a vivid comparison that a domain specific language is like a drill, which is a

powerful tool to perform a variety of tasks, in the context of putting holes into

somewhere. A general-purpose language is like a workbench with tools to perform

a variety of tasks. Programmers who are working at their workbench may find a

domain specific language fits exactly to the task he or she is working at.

Concern specific language is the domain specific language for Padus. In support

for each crosscutting concern in development, there is a concern specific language

developed. (8) proposes a billing concern specific language to deal with the billing

crosscutting concerns in the context of service delivery platform (SDP) in the

telecom community.

P a g e | 34

Code 2 Billing CSL example

The billing CSL is an XML based language addressing the billing crosscutting

concern. It identifies two essential elements in billing activities: when billing

happens and what should be charged. It detects the operations that should be

charged and then sends the detected information as well as the timestamp to a

dedicated charging service. The charging service will keep a complete log of all

charged events, which will be collected later for generating bills for the customer,

possibly affected by business rules. As shown in Code 2 Billing CSL example

adopted from (8), user can define the billing activity straightforwardly without the

profound knowledge of Padus or even BPEL.

Concern specific languages for Padus are developed in an ad hoc manner. Next

chapter will introduce an access control concern specific language. Before that,

next section will introduce a visualized service creation environment where both

traditional WSDL and CSL can be composed visually by dragging and dropping.

2.5.5 Visual Web Service Creation Environment

Visual web service creation environment (SCE) provides an even higher level

abstraction than work flow language such as BPEL to compose web services. In

addition, SCE also supports modularizing crosscutting concerns both by Padus and

P a g e | 35

CSL. There are three kinds of repositories in SCE: WSDL-documented services,

composition templates specified in BPELs, and crosscutting concerns either as

Padus aspects or CSL programs. When use needs to compose web services into a

new business process, it suffices to choose a composition template with place

holders for the component web services, and then fill in the place holders with

concrete web services by dragging and dropping WSDL services from the service

repository. If crosscutting concerns are involved, user can either add a Padus

aspect to the related service as in Figure 5 Screenshot of the SCE's interface, or

add a CSL as in

Figure 5 Screenshot of the SCE's interface

P a g e | 36

Figure 6 A composition with a concern-specific language

When a user composes services in SCE, the compatibility between the services

and the composition template is checked automatically. SCE will generate a report

with the mismatch feedback to the user, if the service turns out to be in

compatible.

SCE handles CSL by first transforming CSL to Padus aspects. Chapter 5

introduces a transforming framework to assist SCE implementation.

P a g e | 37

3 Access Control Concern Specific Language

3.1 Design of Enterprise Role Based Access Control

Language

3.1.1 Introduction to Role Based Access Control

In computer systems security, role-based access control (RBAC) (28) is an

approach to restricting system access to authorized users. It is a newer alternative

approach to mandatory access control (MAC) and discretionary access control

(DAC) (29).

The three essential elements in a role-based access control model are user, role and

permissions. Roles are associated with sets of permissions, and users are assigned

one or more roles to access the authorized resources. Within an organization, roles

are relatively stable, while users and permissions are numerous and may change

rapidly. Therefore, controlling all access through roles simplifies the management

and review of access controls. Figure 7 A RBAC model adopted from (28) shows

essential elements in a RBAC model, and the relationship between each other

including user-role assignments (UA), role hierarchies (RH), Role Permission

Assignments (PA), User-Session Assignment (US), and Role-Session Assignment

(RS).

P a g e | 38

Figure 7 A RBAC model

Since the RBAC model aims at modeling a complex enterprise level access control

system, this thesis simplifies the model as an access control CSL (AC_CSL) to fit

in the context of services delivery platform of telecom community. Next section

introduces the AC_CSL as well as the implementation Padus aspect and an XSLT

transformer to transform an AC_CSL to Padus as shown in Figure 8 Access

Control CSL to Padus Aspects Transformation.

P a g e | 39

As an experiment to apply rule based access control model to the telecom service

delivery platform, AC_CSL provides only the most basic functions. The AC_CSL

can expand to provide more function based on more research on the SDP, and the

current XSLT transformer can also be easily modified to adapt to provide Padus

implementations for extended AC_CSL, since according to the Figure 7 A RBAC

model, the more advanced functions largely involves crosscutting concerns, which

Padus is intended to address.

3.1.2 Access Control Concern Specific Language

Access Control Concern Specific Language is an XML and Padus based language

to address the access control crosscutting concern in the service delivery platform

in telecom community. As shown in Figure 9 Access Control CSL model, there

are three elements, each role is associated with a set of permissions, and each user

is assigned to one or more roles to access the authorized resources.

Figure 8 Access Control CSL to Padus Aspects Transformation

Access

Control CSL

Padus Aspects XSLT Transformer

P a g e | 40

Code 3 Access Control Concern Specific Language shows an example to restrict

users can only invoke the services according their role. For example,

“AdminUser” can only invoke adminService instead of SMSService or

ConfCallService. One user can be assigned with more than one role, such as the

“SuperUser”, which can invoke all the services in the example, since it’s assigned

all the three roles.

<concern language="AccessControl" name="DSPAccessControl">
 <role name="AdminRole">
 <allow>
 <pointcut name="adminStart(Jp)" pointcut=
"invoking(Jp,'AdminService','AdminPT','creatAdmin')"/>
 </allow>
 </role>
 <role name="SMSRole"> … </role>
 <role name="ConfCallRole"> … </role>
 <user name="AdminUser"> <role name="AdminRole"/> </user>
 <user name="SMSUser"> … </user>
 <user name="ConfCallUser"> … </user>
 <user name="SuperUser">
 <role name="SMSRole"/>
 <role name="AdminRole"/>
 <role name="ConfCallRole"/>
 </user>
</concern>

Code 3 Access Control Concern Specific Language

User Role Permissions

Figure 9 Access Control CSL model

P a g e | 41

3.2 Padus Implementation

While access control CSL provides a user-friendly interface to capture the access

control policies from clients, this policies needs to be transformed into Padus

aspects to influence the base BPEL process. Code 4 Padus Implementation for

Admin Service Access ControlCode 4 Padus Implementation for Admin Service

Access Control shows one of the three aspects generated for the previous AC_CSL

example.

We choose to generate one separate aspect for each role rather than one aspect for

all the roles to avoid interfering with each other’s “currentUser” variables when

more than one service is invoked simultaneity. Before invoking an authorized

service, Padus aspect requests the role of the current user, and then loops through

the all the permissions for the role until it meets required the permit and continue

the core process to invoke service, otherwise, an exception will be thrown, and the

user requiring service will not be invoked.

P a g e | 42

<aspect>
 <using>
 <namespace name="xmlns:ac" uri="accessControl.example.com"/>
 <partnerLink name="authentication" partnerLinkType="ac:authenticationLT"/>
 <variable name="currentUser" type="ac:user"/>
 </using>
 <pointcut name="adminStart(Jp)"
pointcut="invoking(Jp,'AdminService','AdminPT','creatAdmin')"/>
 <advice name="accessControl(requiredRole)">
 <sequence>
 <invoke partnerLink="authentication" portType="ac:authenticationPT"
operation="getCurrentUser" outputVariable="currentUser"/>
 <switch>
 <case condition="$currentUser=SMSUser">
 <switch>
 <case condition="$requiredRole=SMSRole">
 <proceed/>
 </case>
 <otherwise>
 <throw
xmlns:FLT="accessControl.com/faults" faultName="FLT:accessDenied"/>
 </otherwise>
 </switch>
 </case>
 <case condition="$currentUser=AdminUser"> … </case>
 <case condition="$currentUser=ConfCallUser"> … </case>

 <case condition="$currentUser=SuperUser"> … </case>
 <otherwise>
 <throw xmlns:FLT="accessControl.com/faults"
faultName="FLT:accessDenied"/>
 </otherwise>
 </switch>
 </sequence>
 </advice>
 <around joinpoint="Jp" pointcut="adminStart(Jp)">
 <advice name="accessControl(AdminRole)"/>
 </around>
</aspect>

Code 4 Padus Implementation for Admin Service Access Control

P a g e | 43

3.3 XSLT transformation

Extensible Stylesheet Language Transformations (XSLT) (30) is an XML based

language to transform XML document from a source tree to a result tree. It

functions by associating element patterns in the source tree to templates, and

templates generate the result tree according to the information from the matched

pattern. While expressing the matching pattern and query the information from the

source tree, XML Path language (XPath) (31), whose primary goal is to address

parts of XML document.

Code 5 XSLT transform file shows our AC_CSL to Padus transforming XSLT.

The first template in code 5, “accessControlAspectTemplate” generates a Padus

aspect every time when it matches a pointcut element by both transforming the

information it gets from the “pointcut” element and calling other templates, which

could perform the same behavior as the first template recursively, until no more

action is available according to the XSLT rules.

Until now, AC_CSL and XSLT cooperate with each other to address the

procedural level access control crosscutting concerns in a user-friendly way, with

Padus as the underlying implementation to affect the base business processes. To

further facilitate clients to apply CSL to the services composition, next section

introduce a transforming framework, which generates Padus aspect automatically,

given the any CSL program and corresponding XSLT transforming rules.

P a g e | 44

<xsl:template name="accessControlAspectTemplate" match="//pointcut">
 <aspect>
 <using>
 <namespace name="xmlns:ac" uri="accessControl.example.com"/>
 <partnerLink name ="authentication"
partnerLinkType="ac:authenticationLT"/>
 <variable name="currentUser" type="ac:user"/>
 </using>
 <xsl:copy‐of select="."/>
 <xsl:call‐template name="accessControlAdviceDefinitionTemplate"/>
 <around joinpoint="Jp" pointcut="{@name}">
 <advice name="accessControl({ancestor::role[1]/@name})"/>
 </around>
 </aspect>
</xsl:template>
<xsl:template name="accessControlAdviceDefinitionTemplate">
 <advice name="accessControl(requiredRole)">
 <sequence>
 <invoke partnerLink="authentication" portType="ac:authenticationPT"
operation="getCurrentUser" outputVariable="currentUser"/>
 <switch>
 <xsl:for‐each select="//user">
 <xsl:call‐template name="matchUserTemplate"/>
 </xsl:for‐each>
 <otherwise>
 <throw xmlns:FLT="accessControl.com/faults"
faultName="FLT:accessDenied"/>
 </otherwise>
 </switch>
 </sequence>
 </advice>
</xsl:template>
<xsl:template name="matchUserTemplate">
 <case condition="$currentUser={@name}">
 <switch>
 <xsl:for‐each select="role">
 <xsl:call‐template name="matchUserRoleTemplate"/>
 </xsl:for‐each>
 <otherwise>
 <throw xmlns:FLT="accessControl.com/faults"
faultName="FLT:accessDenied"/>
 </otherwise>
 </switch>
 </case>
</xsl:template>
<xsl:template name="matchUserRoleTemplate">
 <case condition="$requiredRole={@name}">
 <proceed/>
 </case>
</xsl:template>

Code 5 XSLT transform file

P a g e | 45

4 CSL to Padus Transforming Framework

Service creation environment described in section 2.5.5 provides a user-friendly

service creation environment. Padus described in section 2.5.3 addresses the

procedural-level crosscutting concern modularization problem. CSLs introduced in

section 2.5.4 facilitates users to deal with crosscutting concerns without the in-

depth knowledge of Padus. The essential motivation of CSL is to integrate Padus

into the SCE to achieve an even higher level user friendly interface to compose the

services.

The motivation of the transforming framework proposed in this chapter is to

integrate CSL into the SCE as a plug in on the Eclipse platform. The framework

performs two main functions: transforming a given CSL program to Padus aspect

for implementing the crosscutting concern, and a syntax validator to check the

given CSL program against the XML Schema or DTD to make sure the CSL code

is a valid input.

The implementation of the framework involves the Java API for XML Processing

(JAXP) (32). JAXP is one of the Java XML programming APIs. It aims at

validating and parsing XML documents. The Document Object Model parsing

interface (DOM) and the Simple API for XML parsing interface (SAX) are the

two major XML parsing interfaces. In our implementation, we use SAX to

validate the CSL program, since SAX is faster and uses less memory.

P a g e | 46

4.1 Transformation

As shown in Figure 10 CSL to Padus Transformer class diagram, for each Concern

Specific Language, there should be one specific Transformer class which handles

a given kind of CSL program, and generates the Padus aspects into the given

output address. Each CSL transformer keeps the information of the XSLT

transforming rules specific to the corresponding CSL.

4.2 Validation

Validator is responsible for check if the input CSL program conforms to the

predefined syntax. Both DTD and XML Schema can be used to define the syntax

of CSLs, as shown in Figure 11 CSL syntax validation class diagram.

Figure 10 CSL to Padus Transformer class diagram

P a g e | 47

Figure 11 CSL syntax validation class diagram

P a g e | 48

5 Conclusion

The traditional workflow and business process modeling languages suffer from

two problems in providing user an easy to use environment: lack support for visual

creation environment and poor modularization of crosscutting concerns. Padus and

visual service creation environment addresses these problems by proposing

concern specific language for individual crosscutting concern and integrating

CSLs into the service creation environment. In this thesis, we propose a role based

access control language and its implementation to address the procedural level

crosscutting concern in the telecom community. Additionally, we introduce a

transformation framework to transform the CSL codes into Padus aspects so as to

assist service creation environment.

The role based access control concern specific language applies role based access

control notation to address the access control concern in the service delivery

platform of telecom community. As an experimental proposal, our model provides

only the basic functionality of access control. In future work, a more sophisticated

model with support for managing role hierarchies, role permission assignments,

user-session assignment, and role-session assignment (28) or other constrains

specific to the telecom community can be adopted. The transformation framework

also provides only the most basic functionality currently. We believe that JAXP

API can fulfill the more sophisticated tasks from the further research on the

industry demand.

P a g e | 49

Bibliography

1. Web Services Architecture. W3C Working Group Note. [Online] February 11,

2004. http://www.w3.org/TR/ws-arch/.

2. Orchestration and Choreography: Standards, Tools and Technologies for

Distributed Workflows. Ross-Talbot, Steve. Naples, Italy : s.n., 2005. Workflows

management: new abilities for the biological information overflow.

3. Standard, OASIS. Web Services Business Process Execution Language

Version 2.0. [Online] http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-

OS.html, April 11, 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

4. Isolating Process-Level Concerns Using Padus. Braem, M., Verlaenen, K.,

Joncheere, N., Vanderperren, W., Van Der Straeten, R., Truyen, E., Joosen,

W. and Jonckers, V. Vienna, Austria : LNCS Springer-Verlag, September 2006. .

In Proceedings of the 4th International Conference on Business Process

Management (BPM 2006).

5. AO4BPEL: An Aspect-Oriented Extension to BPEL. Anis Charfi, Mira Mezini.

Special issue on "Recent Advances in Web Services", s.l. : World Wide Web

Journal (Springer), 2007.

6. Towards aspect weaving applications. Carine Courbis, Anthony Finkelstein.

St. Louis, MO, USA : ACM Press, 2005. International Conference on Software

Engineering, Proceedings of the 27th international conference on Software

engineering.

P a g e | 50

7. Unraveling Crosscutting Concerns in Web Services Middleware. Verheecke,

B., Vanderperren, W. and Jonckers, V. s.l. : In IEEE Software journal, pp 42-

50, January 2006, Vol. 23(1).

8. Mathieu Braem, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der

Straeten, Viviane Jonckers. Concern-Specific Languages in a Visual Web

Service Creation Environment. Electronic Notes in Theoretical Computer Science

(ENTCS). 2007, Vol. Volume 163 , Issue 2 .

9. Hugo Haas, Allen Brown. Web Services Glossary. W3C Working Group Note.

[Online] http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/, February 11,

2004. http://www.w3.org/TR/ws-gloss/.

10. courses, Service Oriented Architecture (SOA). Web Services Standards.

Technologies and Standards for Service Oriented Architecture Implementation.

[Online] 2005,2006. https://www-

304.ibm.com/jct09002c/university/scholars/courseware/repository/SOA/SW719/S

W719Topic1.pdf.

11. Web Services Interoperability Organization. [Online] http://www.ws-i.org/.

12. Keith Ballinger, David Ehnebuske, Martin Gudgin, Mark Nottingham,

Prasad Yendluri. Basic Profile Version 1.0. [Online] http://www.ws-

i.org/Profiles/BasicProfile-1.0-2004-04-16.html, 04 16, 2004. http://www.ws-

i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

13. SOAP Version 1.2 Part 0: Primer (Second Edition). W3C Recommendation.

[Online] http://www.w3.org/TR/2007/REC-soap12-part0-20070427/, April 27,

2007. http://www.w3.org/TR/soap12-part0/.

P a g e | 51

14. David Booth, Canyang Kevin Liu. Web Services Description Language

(WSDL) Version 2.0 Part 0: Primer. W3C Recomendation. [Online]

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626, June 26 , 2007.

http://www.w3.org/TR/wsdl20-primer/.

15. UDDI Specification. OASIS. [Online] http://www.oasis-

open.org/committees/uddi-spec/doc/tcspecs.htm.

16. Voormann, H. Image:Webservices.png. wikipedia. [Online] May 18, 2004.

http://en.wikipedia.org/wiki/Image:Webservices.png.

17. Steve Ross-Talbot, Tony Fletcher. Web Services Choreography Description

Language: Primer. W3C Working Draft. [Online]

http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/, June 19, 2006.

http://www.w3.org/TR/ws-cdl-10-primer/.

18. Orchestration and Choreography: Standards, Tools and Technologies for

Distributed Workflows. Ross-Talbot, Stephen.

19. Business Process Modeling Notation Information. Object Management Group

(OMG). [Online] 07 09, 2007. http://www.bpmn.org/.

20. Appendix A. AspectJ Quick Reference. The AspectJTM Programming Guide.

[Online] 2003. http://www.eclipse.org/aspectj/doc/released/progguide/quick.html.

21. Static and Dynamic Approaches to Weaving. Michal Forgac, Jan Kollar.

Poprad, Slovakia : s.n., 2007. 5th Slovakian-Hungarian Joint Symposium on

Applied Machine Intelligence and Informatics.

22. Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic Weaving

for Aspect-Oriented Progamming. Notherlands : ACM, 2002.

P a g e | 52

23. JAsCo: an aspect-oriented approach tailored for component based software

development. Davy Suvée, Wim Vanderperren,Viviane Jonckers. Boston,

Massachusetts : ACM Press, 2006. Proceedings of the 2nd international

conference on Aspect-oriented software development.

24. Aspect-oriented logic meta programming. De Volder, K. 1998. Workshop on

Aspect Oriented Programming.

25. De Volder, K,. Type-Oriented Logic Meta Programming. s.l. : Vrije

Universiteit Brussel, 1998. Vol. PhD thesis.

26. Arie van Deursen, Paul Klint, Joost Visser. Domain Specific Languages: An

Annotated Bibliography. [Online] 02 09, 2000.

http://homepages.cwi.nl/~arie/papers/dslbib/#foot85.

27. Domain-specific programming language. wikipedia. [Online] 08 09, 2007.

http://en.wikipedia.org/wiki/Domain-specific_programming_language.

28. Role Based Access Control Models. Ravi S. Sandhu, Edward J. Coynek, Hal

L. Feinstein, Charles E. Youman. s.l. : IEEE Press, 1996, Vols. 29(2): 38-47.

29. The Inevitability of Failure: The Flawed Assumption of Security in Modern

Computing Environments. P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R.

C. Taylor, S. J. Turner, and J. F. Farrell. Oct. 1998. Proceedings of the 21st

National Information Systems Security Conference. Vols. pages 303–314 .

30. Clark, James. XSL Transformations (XSLT) Version 1.0. [W3C

Recommentation] s.l. : W3C, 1999.

P a g e | 53

31. James Clark, Steve DeRose. XML Path Language (XPath) Version 1.0. W3C

recommendation. [Online] http://www.w3.org/TR/1999/REC-xpath-19991116 , 11

06, 1999. http://www.w3.org/TR/xpath.

32. Java API for XML Processing (JAXP). Sun Developer Network (SDN).

[Online] 2007. http://java.sun.com/webservices/jaxp/.

