
Faculteit Wetenschappen
Vakgroep Computerwetenschappen

Workflow Patterns for Modeling
Computer Aided Engineering Iterations

Proefschrift ingediend met het oog op het behalen
van de graad van Master in de Ingenieurswetenschappen: Computerwetenschappen

Wouter De Geest

Promotor: Prof. Dr. Viviane Jonckers
Begeleider: Niels Joncheere

AUGUSTUS 2009

c© Vrije Universiteit Brussel, all rights reserved.

Abstract

Worfklow languages are typically used for modelling business processes since
it is very natural to think of business processess as being workflows. But we
should not limit workflow languages to business processes only. Any logical
flow of tasks can in theory be modelled by a workflow language. It might
be that this flow of tasks, or process, is a complex one and that as a result
current workflow approaches might need adaptation or added functionality.
One such complex flow is found in Computer Aided Engineering (CAE) and
Multi-Disciplinary Optimization (MDO). Applications in these domains dif-
fer in complexity from applications in other domains in such a way that they
cannot be built using today’s workflow languages. This complexity has been
studied by SSEL (Software and Systems Engineering Lab, VUB). The first
outcome of this study was the recognition of three main requirements: mod-
ularization of crosscutting concerns, advanced data support and advanced
iteration support. A second outcome was the proposal of a conceptual work-
flow language meeting the first two requirements. This thesis contributes to
the framework support for the third and final requirement of supporting iter-
ations. Iterations are algorithms such as optimization methods, Monte-Carlo
methods and many more. In a first step we will define these iterations by
making a classification. In a second step we propose workflow patterns that
fit into the existing approach and that allow to implement the classified itera-
tions. The result of this thesis makes the conceptual workflow language meet
all requirements. This means that a first implementation of the language
can start. For the first time MDO applications can be developed using a
real workflow language where they gain all direct benefits from workflow lan-
guages: evolution and reuse, customizability, collaboration and distributive
computation.

Samenvatting

Workflowtalen worden in het bijzonder gebruikt om bedrijfsprocessen te mod-
elleren omdat bedrijfsprocessen op een natuurlijke wijze als workflow kun-
nen worden voorgesteld. Workflowtalen kunnen echter voor meer dan alleen
bedrijfsprocessen gebruikt worden. Elke logische opvolging van taken kan
theoretisch door een workflowtaal gemodelleerd worden. Het kan zijn dat
deze takenopvolging zeer complex is en dat er bijgevolg een aanpassing of to-
evoeging aan bestaande talen nodig is. Een van zulke complexe processen is
terug te vinden in Computer Aided Engineering (CAE) en Multi-Disciplinary
Optimization (MDO). Applicaties in deze domeinen verschillen zodanig in
complexiteit dat ze onmogelijk door huidige workflowtalen kunnen worden
voorgesteld. Dit probleem is een eerste maal onderzocht geweest bij SSEL
(Software and Systems Engineering Lab, VUB). Hieruit vloeiden volgende
probleemdefinities voort: modularization of crosscutting concerns, advanced
data support and advanced iteration support. Meteen werd ook een con-
ceptuele taal voorgesteld die een oplossing biedt voor de eerste twee proble-
men. Deze thesis stelt een mogelijke oplossing voor de derde en laatste prob-
leemdefinitie, namelijk het ondersteunen van iteraties. Iteraties zijn algorit-
men zoals optimalisatie methodes, Monte-Carlo methodes en vele anderen.
In een eerste stap zullen we deze iteraties definiëren in een classificatie. In
een tweede stap stellen we workflowpatronen voor die in het bestaande con-
cept passen en die toelaten de gedefinieerde iteraties te implementeren. De
conceptuele workflowtaal voldoet nu aan alle eisen en bijgevolg kan een eerste
implementatie van de taal beginnen. Het wordt nu mogelijk om MDO ap-
plicaties te ontwikkelen met behulp van een echte workflowtaal. Ze krijgen
hiermee alle directe voordelen die workflowtalen te bieden hebben: evolutie
en hergebruik, aanpasbaarheid, samenwerking en gedistribueerde berekenin-
gen.

Acknowledgements

My sincere thanks go to Prof. Dr. Viviane Jonckers and Niels Joncheere for
giving me the opportunity to work on this project. They have provided me
with the necessary assistance to reach the targets. The meetings that took
place and the discussions we’ve held were always in a very constructive and
communicative atmosphere.
I would like to take the opportunity to express my greatest thanks to three
of my fellow students: Kim Bauters, Pieter Coucke en Wim Van Litsenborg.
They have been of enormous importance in realizing this thesis as an evening
student. Without their assistance during the past three years, I’d probably
not even be writing this acknowledgement today.
Of course no man can really accomplish anything without the constant sup-
port of his loving family and girlfriend. Many thanks to my mother for
both her emotional and financial assistance. Thank you Tine for your love,
patience, understanding and support.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem description . 2

1.3 Solution description . 2

2 Literature review 5

2.1 Introduction . 5

2.2 Workflow languages . 5

2.2.1 Control-flow patterns 6

2.2.2 Data-flow patterns . 7

2.2.3 Resource patterns and exception handling patterns . . 9

2.2.4 YAWL: Yet Another Workflow Language 9

2.3 Workflows for Computer Aided Engineering 12

2.3.1 CAD, CAE and PIDO 12

2.3.2 Optimus . 13

2.4 Current Status . 17

2.4.1 Requirement 1: Separation of concerns 18

2.4.2 Requirement 2: Advanced data support 18

2.4.3 Requirement 3: Advanced iteration support 19

i

3 CAE Iterations 21

3.1 Introduction . 21

3.2 Design exploration iterations 21

3.2.1 Table method . 22

3.2.2 Design of experiments 22

3.3 Numerical optimization iterations 26

3.3.1 Single-objective optimization 27

3.3.2 Multi-objective optimization 28

3.3.3 In practice . 29

3.4 Robustness and reliability iterations 32

3.4.1 Introduction . 32

3.4.2 Monte-Carlo Method 33

3.4.3 In practice . 34

4 CAE Patterns 37

4.1 Introduction . 37

4.2 Pattern definition . 37

4.2.1 Pattern structure . 37

4.2.2 Pattern data . 39

4.3 Pattern 1: Analysis pattern 39

4.3.1 Structure . 40

4.3.2 Pattern nesting . 41

4.3.3 Pattern data . 41

4.3.4 Analysis placeholder 42

4.3.5 Execution . 42

4.4 Pattern 2: Experiment loop pattern 43

4.4.1 Pattern structure . 43

4.4.2 Pattern nesting . 44

4.4.3 Placeholders . 45

4.4.4 Execution . 46

4.4.5 Random experiment loop pattern 47

ii

4.4.6 Iteration mapping . 47

4.5 Pattern 3: Optimization loop pattern 48

4.5.1 Problem description 48

4.5.2 Pattern structure . 49

4.5.3 Pattern nesting . 49

4.5.4 Placeholders . 50

4.5.5 Pattern data . 51

4.5.6 Execution . 52

4.5.7 Iteration mapping . 54

5 Proof of concept implementations 57

5.1 Introduction . 57

5.2 Analysis pattern: . 57

5.2.1 Example 1: Squared function 57

5.2.2 Example 2: Rosenbrock function 58

5.3 Experiment loop pattern . 60

5.3.1 The analysis placeholder 61

5.3.2 The experiment generator placeholder 61

5.3.3 Execution . 62

5.4 Optimization loop pattern . 63

5.4.1 Experiment loop pattern 1 placeholder 64

5.4.2 Experiment loop pattern 2 placeholder 66

5.4.3 IsConverged placeholder 67

5.4.4 Execution . 68

6 Future Work 71

7 Conclusion 75

A Optimus FEM Simulation 77

iii

B Simulation examples 79

B.1 Design of experiments . 79

B.2 Optimization simulation . 81

B.2.1 Sequential quadratic programming (SQP) 81

B.2.2 Self adaptive evolution (SAE) 81

B.2.3 SQP after SAE . 86

B.3 Monte-Carlo simulation . 86

C Proof of Concept Code Listings 88

C.1 Analysis pattern . 88

C.1.1 Example 1 WSDL file 88

C.1.2 Example 2 WSDL file 90

C.2 Experiment loop pattern . 93

C.3 Optimization loop pattern . 95

Bibliography 102

iv

List of Figures

2.1 Sequence pattern . 6

2.2 Exclusive choice pattern . 7

2.3 Parallel split pattern . 7

2.4 Synchronization pattern . 7

2.5 Task to task communication. 8

2.6 Block-task to sub-process decomposition. 8

2.7 Symbols used in YAWL. 10

2.8 figure:yawlinpractice . 11

2.9 Optimus virtual test laboratory. 13

2.10 Pennsylvania-bridge type structure. 14

2.11 Optimus workflow . 15

2.12 Optimus post-processing. Top left: 3D plot, Top middle:
Optimization progress plot, Top right: 2D scatter plot, Bot-
tom left: Correlation plot, Bottom middle: Summary, Bottom
right: 3D scatter plot . 17

2.13 Redirecting workflow A to Workflow B. 18

2.14 Data ports and data transfer. 19

3.1 Two level full factorial design for 3 input factors. 23

3.2 Three level full factorial design for 2 input factors. 24

3.3 Three level full factorial design for 3 input factors. 24

3.4 Design of experiments in practice 26

3.5 Pareto front. 29

3.6 Optimization in practice . 31

v

3.7 Robustness and Reliability in theory 33

3.8 Workflow for robustness and reliability study on beam 28. . . 34

3.9 Normal distribution on section 1 with low bound −0.0001. . . 34

3.10 Histogram plot for section 1 35

3.11 Histogram plot for beam 28 35

4.1 Structural representation of the analysis pattern. 40

4.2 Structural representation of the experiment loop pattern. . . . 44

4.3 Structural representation of the optimization loop pattern. . . 50

5.1 Structural representation of the Squared Function analysis
pattern implementation . 58

5.2 Plot of the Rosenbrock function of two variables 59

5.3 Structural representation of the Rosenbrock Function analysis
pattern implementation . 60

5.4 Random experiment loop pattern execution 62

5.5 ActiveVOS monitoring BPEL process 63

5.6 Optimization loop pattern execution 68

5.7 ActiveVOS monitoring BPEL process 69

A.1 Example input and output files. 78

vi

Listings

4.1 Input variable xsd schema definition 39

4.2 Output variable xsd schema definition 39

4.3 BPEL copy of pattern input to analysis input 42

4.4 Invoking the analysis web service 43

4.5 BPEL copy of analysis output to pattern output 43

4.6 BPEL for-each construct . 46

4.7 BPEL copy from experiment generator output to analysis pat-
tern input . 46

4.8 BPEL copy from analysis output to experiment loop summary 46

4.9 BPEL while construct and invocation of the IsConverged web
service . 53

4.10 BPEL if-else construct . 53

4.11 BPEL copy from experiment loop output to iterate web service
input . 54

4.12 BPEL copy from experiment loop output to optimization loop
summary . 54

5.1 Squared function implementation 58

5.2 Invoking the squared function web service 58

5.3 Rosenbrock function implementation 59

5.4 Invoking the Rosenbrock function web service 60

5.5 Random generator web service implementation 61

5.6 Invoking the random generator web service 62

5.7 L-BFGS Usage . 63

5.8 Init web service implementation 65

vii

5.9 Iterate web service implementation 66

5.10 IsConverged web service implementation 68

C.1 Example 1 WSDL file . 88

C.2 Example 2 WSDL file . 90

C.3 Random DOE WSDL file . 93

C.4 Optimization WSDL file . 95

viii

Chapter 1

Introduction

1.1 Context

Computer Aided Engineering is a specific virtualization technology that aids
engineers in their daily tasks. CAE tools allow to build and analyse virtual
product structures such as a building, a car, an airplane, etc. The goal of
CAE is to improve the general product development cycle. Not surprisingly,
this cycle is complex and consists of many subtasks and disciplines such as
structural integrity, noise and vibration, systems dynamics and durability.
Through CAE, these steps become simulated and automated and designs
become optimized before the actual prototype construction.
However, there is more to it than just performing structural analysis on the
design. After all, hundreds of different parameters might influence the vir-
tual model. For example, consider we want to investigate the mass of car.
A car has hundreds of different components and changing the thickness of
one component influences the total mass of the car. This complexity asks for
tools that abstract over these parameters and gain easier and faster insight
in the design. The latter problem is defined as a specific niche in the market
called PIDO [dPJ02], process integration and design optimization. These
tools allow for design space exploration, multi-objective optimization and
robust design techniques. These terms are explained in more detail in Chap-
ter 3. Applications in this domain are often referred to as multi-disciplinary
design optimization (MDO) applications [CNdPJ02].

In another domain we have workflow languages such as BPEL (Business
Process Execution Language) [AA07] or YAWL (Yet Another Workflow Lan-
guage) [Kne04]. They provide low level building blocks for modeling business

1

2 CHAPTER 1. INTRODUCTION

processes. BPEL is widely accepted in today’s industry due to its maturity
but has problems in standardizing its approach. YAWL on the other hand
was developed as an answer on BPEL’s problems and based on workflow
patterns developed by van der Aalst [vdAtHKB02]. Through these patterns
YAWL has a more fundamental formalization compared to BPEL.

1.2 Problem description

What is the relationship between workflow languages and Computer Aided
Engineering? Looking at today’s landscape of both domains, they seem fairly
uncorrelated. On the one hand we see that CAE/MDO is in need for work-
flow systems. On the other hand, the market and most certainly the PIDO
market show that this translation from engineering process to workflows is
not in common practice. Paradoxically, the market wants it and needs it.
One of the leaders in the PIDO market, called Optimus [Sol08], shows this
demand. In this tool, the engineer can indeed express his process in some
high level workflow.
So then why are MDO applications not using any of today’s workflow lan-
guages? After all, by not using these languages they miss out on a lot of free
constructs. Each time these applications introduce a new workflow feature,
they reinvent the wheel. This paradox has been studied in recent research
at the SSEL lab of the VUB ([JDVJ08]). The reason for the discrepancy in
workflow need and workflow use by CAE has mainly three reasons, all caused
by the complexity in requirements of MDO applications which are missing
in today’s workflow languages. First of all MDO workflows are in need for
differentiating the main workflow concern from the secondary concern using
the same workflow. Secondly, MDO workflows focus on data representation
and manipulation and finally MDO workflows require advanced iteration con-
structs. The goal of the project can thus be formalized as the development
of a workflow language leveraging current workflow approaches with mod-
ularization of crosscutting concerns, advanced data support and iteration
constructs. These requirements are explained in more detail in Section 2.4

1.3 Solution description

In [JDVJ08] a conceptual framework is presented which builds upon the
YAWL engine. It solves the problem of modularization of crosscutting con-

1.3. SOLUTION DESCRIPTION 3

cerns by extending the sub-workflow construct. Secondly it proposes much
better support for data handling. For example unlike other languages, data
will be explicitly visualized in the workflow.
However the final problem for supporting iterations is yet unanswered in
SSEL’s research and language. This is exactly the topic of my thesis. We
present a solution for capturing the advanced iteration constructs that MDO
applications require.
The contribution has three parts: in Chapter 3 we present a classification of
all MDO iterations from the viewpoint of a structural engineer. In Chapter 4
we present new workflow patterns suited for modeling these iterations and
we map the iterations classified in Chapter 3 into these patterns. Finally in
Chapter 5 we make a proof of concept, by implementating some of the MDO
iterations using the proposed patterns.
The conceptual framework for modeling CAE workflows with the added sup-
port of advanced iteration patterns are of big importance to the CAE/MDO
industry. It not only bridges the gap between the worlds, but it will support
their software for evolution and reuse. By using this new language, MDO
applications can focus on the actual structural engineering part. Not only
does it offer support for modularization, data representation and advanced
iteration, furthermore, it opens the doors for collaboration and customiza-
tion due to the nature of the service oriented architecture of the framework
such as native support for web services and parallelism.

Chapter 2

Literature review

2.1 Introduction

The goal of this thesis is to analyze the use of iterations in a new workflow
language for CAE. In order to succeed in this, the different terms apparent
in the goal statement need intensive research. Below, we will summarize the
result of this prior research starting with a description of workflow languages,
continuing in a description of Computer Aided Engineering and the current
use of workflow languages in CAE. Finally we conclude the review section
with the current status of the new language being developed at the VUB.

2.2 Workflow languages

At the heart of any successful organization is the drive to improve efficiency.
Business processes are used to analyze this drive for efficiency: knowing
how an organization works by identifying their processes and finding ways to
improve the flow between them. We can summarize this statement in what is
called Business Process Management, a methodology defined as "supporting
business processes using methods, techniques, and software to design, enact,
control, and analyze operational processes involving humans, organizations,
applications, documents and other sources of information" [vdAHW03].
One way of capturing such business processes is through workflow languages,
defined as software systems that manage and execute operational processes.
Many such languages exist today such as UML activity diagrams, XPDL
and BPEL. These approaches however lack a formal foundation, caused by
the historical absence of a standardized definition of the core constructs of

5

6 CHAPTER 2. LITERATURE REVIEW

business processes. Therefore a new approach for standardizing business
processes has been introduced by Van der Aalst et al. [vdABtH+00], which is
a pattern-based approach. These patterns are categorized into four classes.
Below we will sketch the different pattern categories, and highlight some
of the more commonly used patterns. Finally we will end the section on
workflow languages by introducing YAWL, an open source workflow system
that is implemented with van der Aelst patterns in mind.

2.2.1 Control-flow patterns

Patterns belonging to the control-flow perspective formalize tasks that make
up processes and the relationship between them. In total there are 20 differ-
ent patterns identified by the Workflow Patterns Initiative [vdAtH09], such
as:

The sequence pattern, a pattern that describes a sequence between
tasks and serves as the basic building block for processes (See figure
2.1).

Figure 2.1: Sequence pattern

The exclusive choice pattern, a pattern that allows a thread of
control to be directed to a specific task depending on the outcome of a
preceding task as shown in figure 2.2.

Parallel split pattern, a pattern that allows for divergence of a
branch into two or more parallel branches each of which execute con-
currently, see figure 2.3.

Synchronization pattern, defined as the pattern that converges two
branches into one, see figure 2.4. This pattern is usually preceded by
the parallel split pattern.

2.2. WORKFLOW LANGUAGES 7

Figure 2.2: Exclusive choice pattern

Figure 2.3: Parallel split pattern

Figure 2.4: Synchronization pattern

2.2.2 Data-flow patterns

These patterns all handle data that is used, consumed, manipulated and
transferred in some way during the flow of a process. These data patterns
can be further subdivided into 4 categories: data visibility patterns, data
interaction patterns, data transfer patterns and data-based routing patterns.

Data visibility patterns, are patterns that control how data elements
can be viewed or how data elements are scoped in a process. Typical
scopes include task, block and global. There are in total 8 data visibility
patterns.

8 CHAPTER 2. LITERATURE REVIEW

Data interaction patterns, include those patterns that allow for
communication of data elements between tasks. For example, patterns
to pass data between two individual tasks (see figure 2.5) or patterns
to communicate data between tasks and sub-processes (see figure 2.6).

Figure 2.5: Task to task communication.

Figure 2.6: Block-task to sub-process decomposition.

Data transfer patterns, are patterns that consider the manner by
which data can be transferred between different process components.
Typical transfer patterns include: Data transfer by value, a pattern
that avoids the need for shared memory; Data transfer by refer-
ence, used for accessing shared memory by utilizing its reference; Data
transformation pattern, a pattern that allows data transformation
to a data element prior to it being passed to a process component.

Data-based routing patterns, include those patterns that depend-
ing on the state of certain data elements will alter the control flow of
the process. Typical patterns include: Task precondition, a pattern
that allows a task to be preconditioned, meaning that the task can
only proceed if the associated precondition evaluates positively; Task
post condition, a pattern that allows a task to be post conditioned,
which will ensure that a task cannot complete until specified output
parameters exist and have been allocated a value.

2.2. WORKFLOW LANGUAGES 9

2.2.3 Resource patterns and exception handling pat-
terns

We decided to only shortly describe these two categories together in one sec-
tion as these patterns are less important to our research. Resource patterns
center around the modeling of human resources, for example to describe the
relationship of specific tasks to the people in the organizational model. It
allows for work distribution and effective work planning.
Exception handling patterns deal with the unexpected behavior or unde-
sirable events that may be encountered during execution. These patterns
should answer three questions: what to do with the work item that caused
the exception, what to do with the other work items influenced by the prob-
lematic work item and what recovery action should be taken to resolve the
exceptional situation.

2.2.4 YAWL: Yet Another Workflow Language

One of the major outcomes of the Workflow Patterns Initiative was the recog-
nition of the need for a business process modeling language that would pro-
vide concrete implementations for the described workflow patterns. The
result was the development of YAWL [vdAH03], [Hof03], Yet Another Work-
flow Language, a joint effort between Eindhoven University of Technology
and Queensland University of Technology. YAWL is an open source initiative
that exploits fundamental properties of Petri nets [LKD+08] and implements
19 out of the 20 control-flow patterns. YAWL consists of an operational
environment (containing the workflow engine) and an editor that allows to
visualize Petri nets and that allows to provide user interaction.
Figure 2.7 show the elementary building blocks available in YAWL. A work-
flow specification in YAWL is a set of extended workflow nets (EWF) which
form a hierarchy in a tree-like structure. Tasks in the workflow can either
be atomic tasks or composite tasks. The atomic tasks form the leaves of the
tree, whereas the composite tasks refer to an EWF net at a lower level in the
hierarchy. Each EWF net has exactly one input condition and one output
condition.
To see how YAWL can be used in practice to reason about processes, we have
added three examples that describe a process for booking a flight, hotel and
a car followed by a task to pay for the bookings. The first example as seen
in figure 2.8(a) demonstrates the multi-merge pattern, that is, upon each
successful booking, the pay task is executed. In other words, the pay task
is allowed to be executed three times. The second example as seen in figure

10 CHAPTER 2. LITERATURE REVIEW

Figure 2.7: Symbols used in YAWL.

2.8(b) implements the structured synchronization merge pattern. This means
that the pay task will execute only once, that is after all three preceded tasks
have been successfully completed. And finally the third example as seen in
figure 2.8(c) implements the discrimination merge pattern, meaning that the
pay task is executed exactly once, but only immediately after the first task
has been completed, canceling out the other two tasks.

2.2. WORKFLOW LANGUAGES 11

(a) Multi-merge example.

(b) Structured synchronization merge.

(c) Discrimination merge.

Figure 2.8: YAWL in practice

12 CHAPTER 2. LITERATURE REVIEW

The reason that we pay attention to YAWL is that it clearly shows, com-
pared to other approaches, its intention for standardization and formaliza-
tion. It wants to follow clear semantics and share it with the world by
providing an open-source workflow engine. For this reason we will use the
YAWL engine as a starting point for implementing the CAE workflow lan-
guage. Although it is true that the current YAWL system does not yet
provide implementations for all patterns, especially not the data-flow pat-
terns, we see an active research group continuously improving YAWL. For
example, research has begun in developing newYAWL [Min07], the next ma-
jor change to YAWL that will provide implementations for all the currently
existing van der Aalst patterns and provide a new set of control-flow patterns
mostly related to more advanced iteration constructs.

2.3 Workflows for Computer Aided Engineer-
ing

2.3.1 CAD, CAE and PIDO

Computer Aided Design (CAD) is the use of computer technology to build
virtual 3D geometric models. It provides a comprehensive description in
shape elements, constraints and materials. CAD is used in many domains
such as the medical society, gaming industry and automotive and aerospace
industries. Example designs of the latter contain car engines and aircraft
wings. However, CAD is limited in that it only informs us about the ac-
tual design form and fit. It does not provide any information about the
functional performance of the design. Once the virtual model is created,
engineers want to analyze the system and make the model undergo extreme
conditions. Typical analysis consists in noise and vibration testing, acous-
tics, crash and durability. To meet these requirements, the engineering field
of Computer Aided Engineering (CAE) has been developed that lift CAD
applications to full Virtual Prototyping applications capable of shortening
design cycles, reducing design costs and producing products with superior
performance. All these functional performance tests are achieved through a
methodology called the Finite Element Method (FEM), a numerical approx-
imation process for solving Partial Differential Equations (PDE).
Engineers are also interested in getting answers to questions as: "What is
the sensitivity of the performance to variations in the design properties?"
or "What design features should be varied, and how, to achieve the target
performance?" To answer these questions, PIDO or Process Integration and

2.3. WORKFLOWS FOR COMPUTER AIDED ENGINEERING 13

Design Optimization comes to the rescue by automating design variation.
Tools in this domain allow to model the analysis process and allow to iterate
over this analysis process by intelligently choosing a set of values for a set
of predefined parameters. Furthermore, designs can be optimized by mini-
mizing and maximizing desired design parameters and finally they allow to
automatically detect sensitivity points in the design.

2.3.2 Optimus

One of the leaders in the PIDO market is Optimus, a virtual design envi-
ronment within which users can ’experiment’ rapidly with the design of a
product, and achieve an optimized design. It can do so by allowing to vi-
sualize the design and provide the engineer critical insights in the system’s
dynamics. This visualization is achieved through workflows. In this graph-
ical network, the user can model his analysis process, define the inputs and
boundaries, outputs and constraints. Once the structure of the process is
thought to Optimus, the environment will automatically generate, analyze,
explore and track the design alternatives, launching a series of ’experiments’
in a ’virtual test laboratory’ (see figure 2.9) through systematic evaluation
of the responses for each virtual run.

Figure 2.9: Optimus virtual test laboratory.

Pennsylvania bridge

The best way to show how Optimus works is through a practical approach.
In the following subsections, we will demonstrate Optimus by capturing the

14 CHAPTER 2. LITERATURE REVIEW

process for prototyping the Pennsylvania bridge and investigating several
functional performance attributes. Figure 2.10 shows the structure of the
bridge and the design inputs we are interested in. The bridge consists of
several connected beams divided into three materials. We have the upper
beams (material 1), the beams forming the deck (material 2) and the inner
beams (material 3). A small Finite Element Method program has been de-
veloped specifically designed to handle the structure of this bridge analyzing
several attributes as mass, displacement and stress. We will choose to inves-
tigate these attributes by varying over the cross-section areas of the three
sets of beams. The FEM program is parameterized in a file-based approach:

Figure 2.10: Pennsylvania-bridge type structure.

it expects a file describing the values for the different design variables and
responds with an output file describing the resulting values for the perfor-
mance attributes. For a complete description of the structure of these two
files, we refer the user to Appendix A.

Optimus workflow

Optimus provides the user the possibility of modeling a process through an
Optimus workflow consisting of several data and activity elements. Below,
we will describe the different Optimus workflow elements and show how they
can be used to model the analysis process of the Pennsylvania bridge. The
resulting workflow will look as in figure 2.11. We will provide a short de-
scription for each workflow element in order of appearance.

2.3. WORKFLOWS FOR COMPUTER AIDED ENGINEERING 15

Figure 2.11: Optimus workflow

Input element An Optimus input element is a data element corre-
sponding to a design input of the structure to be analyzed. The workflow in
our example shows three inputs, corresponding to the three sections of the
Pennsylvania bridge. During execution of the workflow, Optimus will assign
values to these input variables. These values will always be in the range
defined in the input element definition.

Input file element The three input sections are connected to an input
file, which is another data element representing a file on disk. This input file
will later be used as the first parameter in the external FEM program. In
our example the input file will be the file as displayed in Appendix A were
during workflow execution we will substitute the three material cross-section
area values with the three current input values.

Action element An action element is an activity element responsible
for executing external processes. In our example we will simply call the FEM
executable and pass it the 2 connected files: the input file and the output
file. During execution, Optimus will call the external executable, pass as
parameters, the physical file paths of the input file and output file. The
external executable will open the file on disk, execute accordingly and write
its result into the output file. This file is then captured by Optimus into an
output file element.

Output file element An output file element is another data element
responsible for capturing the result of an external program into a file and
extracting generated values into Optimus output and or vector elements. In
our example, the FEM program will generate a file as shown in Appendix A
and extract one output value corresponding to the mass of the bridge and two

16 CHAPTER 2. LITERATURE REVIEW

output vectors, one representing the different stresses and one representing
the different displacements.

Output element An output element is a data element holding one
scalar value. An output definition can further be extended to hold informa-
tion about low and high constraints or about reaching a certain target. This
information can later be used for example by optimization algorithms that
will try to minimize or maximize that output within the given constraints or
that will try to get the output as close as possible to the given target value.
Our workflow defines three outputs: one to define the mass of the bridge
(that will retrieve its value directly from the output file), one output that
represents the maximum of all the extracted stresses and one output that
gives us the maximum value of all extracted displacement values.

Output vector element An output vector element is a data element
holding multiple values at once. In our example we see three vectors, al-
though only two of them hold information about different kind of functional
performance attributes. The first holds the information for the extracted
displacements values, whereas the second vector holds the information for
all the extracted stresses values. Furthermore, we see a third vector that
manipulates its incoming vector by making all vector values absolute.

Design iterations

Once we have completely defined our Optimus workflow, we can start explor-
ing our design space trough the different iterations available. An Optimus
design iteration is a loop of virtual experiments where an experiment is de-
fined as one execution of the workflow with a unique set of values fed to the
input elements. All experiments will be collected so that after the iteration,
post processing is possible on the executed experiments. A complete classi-
fication of these iterations will be given in Chapter 3 where we will use the
Pennsylvania bridge as well to exemplify the theory.

Post-processing

To give a meaning to the executed experiments, Optimus provides an ex-
tensive set of post-processing features, each of them designed to extract as
much information as possible about the executed iteration. Figure 2.12 shows
some of the available plots. A summary plot shows a flat list of all executed

2.4. CURRENT STATUS 17

experiment values with corresponding input and output values. A scatter
plot (either in 2D or 3D) shows in a graphical way, the correlation between
pairs of design variables. A correlation plot denotes the numerical correla-
tion coefficients between design variables. A 3D plot draws a surface plot of
a selected output variable in function of two selected input variables with iso-
lines projected on the bottom. And finally, an optimization progression plot
draws the progress of reaching a specified goal during the different executed
iterations.

Figure 2.12: Optimus post-processing. Top left: 3D plot, Top middle: Opti-
mization progress plot, Top right: 2D scatter plot, Bottom left: Correlation
plot, Bottom middle: Summary, Bottom right: 3D scatter plot

2.4 Current Status

From the literature study of MDO applications we can now deduct the re-
quirements that a suitable workflow language would need. Below we will
summarize these requirements and explain the current solution offered by
SSEL’s conceptual workflow language.

18 CHAPTER 2. LITERATURE REVIEW

2.4.1 Requirement 1: Separation of concerns

In CAE applications we have many concerns, where some are more important
than others. A main concern could be to minimize an objective, whereas side
concerns could be licensing and logging information. In software engineering,
this problem is referred to as the tiranny of the dominant decomposi-
tion [TOH+99]. A concern on its own can be separately modelled into sub-
workflows. However connecting sub-workflows is up until now only possible in
a one dimensional way, therefore causing secondary concerns to be scattered
accross the workflow. To remedy this problem, SSEL has introduced control
ports that allow, in tradition with aspect-oriented techniques, inversion of
control. Control ports are the entries of a task or complete workflows and
have attached connectors that can be annotated with inversion of control
actions. This allows for redirection and resume from and to specified tasks.

Figure 2.13: Redirecting workflow A to Workflow B.

Figure 2.13 shows an example of this construction. We see how the connector
connecting Task A to Task B is annotated with a redirection statement that
will cause Workflow B to be executed before Task B.

2.4.2 Requirement 2: Advanced data support

A second requirement is related to the extensive data use within MDO ap-
plications. In the description of an Optimus workflow, of all the discussed
items, at least five out of six are related to some usage or manipulation
of data. The input, output and vector elements are pure data representa-
tion elements, whereas the input file and output file element manipulate and

2.4. CURRENT STATUS 19

transfer data. Although there are several data patterns available (see Sec-
tion 2.2.2), the problem is that all these patterns are tightly coupled with the
control-flow perspective. Even worse, none of the data-flow patterns have up
until today been implemented in YAWL.
SSEL’s workflow approach resolves this issue by introducing data ports and
first-class data flow constructs. Data ports represent the input and output
parameters of a task and workflow, whereas a data flow construct transfers
data from one port to another while transforming the transferred data by
the specified manipulation task and could be used for example to extract
values from a vector element. This way, all van der Aelst data patterns can
be expressed with the added benefit of being explicitely visualized into the
workflow as seen in figure 2.14.

Figure 2.14: Data ports and data transfer.

2.4.3 Requirement 3: Advanced iteration support

Iterations are still an open issue for SSEL’s language. In Chapter 3 we address
the iterations that are used inside MDO applications. To make a workflow
language useful for MDO applications, it needs to provide iteration patterns
that allow to abstract over all classified iterations. Looking at today’s work-
flow language, none of them come of even near this demand. YAWL supports
the multiple instance pattern allowing a predefined number of instances to
be created. However, many times, MDO iterations such as optimization al-
gorithms are non-deterministic, making this pattern unusable. BPEL comes
closest related to iteration support by providing a for-each loop and a while
loop. Indeed, this is exactly the reason, we choose BPEL as reference lan-
guage to model the iteration patterns in Chapter 4. In a later stadium, as
YAWL is still the preferred language, our proposed patterns will have to be
translated into YAWL. This will be possible as looking at the specificiations

20 CHAPTER 2. LITERATURE REVIEW

of the upcoming language newYAWL [Min07], new iteration patterns will be
added therefore supporting all constructs that BPEL supports today. Fur-
thermore, a CAE iteration is not the same as a simple for-each or while loop.
They will have to be leveraged with iteration data and several placeholders
to make them really usable.

Chapter 3

CAE Iterations

3.1 Introduction

This section involves a thorough investigation and resulting description of
the technologies in the PIDO market. The objective is to explain the dif-
ferent iterations available. We will focus on the actual iterations divided in
three classes each described in its own section. We believe this description is
important for two reasons. First of all, the final goal is to develop a workflow
language specifically designed to aid the CAE/PIDO market. As such it is
important to collect all information from this domain as to be sure that the
resulting language can capture all methodologies currently available. Sec-
ondly, the theory behind tools such as Optimus is an engineering field not
directly known to the software engineering field. We hope that our sidestep
into this domain will guide future researchers so that no time is lost in the
next phase of the project in developing a workflow language for CAE.

3.2 Design exploration iterations

Product engineers require tools to understand rapidly their design space.
They want a way of structurally investigating the influence of the design
input parameters on the output responses of the design. These investigations
can take place either manually or automatically.

21

22 CHAPTER 3. CAE ITERATIONS

3.2.1 Table method

A table method is a type of design space exploration iteration that allows
the user to manually define his set of experiments. The user will choose
himself the number of experiments and assign himself the values for each
input and for each experiment. As a result a table method always yields an
input matrix with row dimension equal to the number of defined experiments
and column dimension equal to the number of inputs.

3.2.2 Design of experiments

Design of experiments (DOE) [LA93] is a systematic approach to get the
maximum amount of information out of various types of experiments while
minimizing the number of experiments. Think of a DOE as a detailed experi-
mental plan, studying the influence of design factors on the design responses.
The way this experimental plan is built, is what makes one type of DOE
differ from another. But whatever the plan, they all share as primary goal to
extract the maximum amount of information ,regarding the factors affecting
a production process, from as few observations as possible.
Since executing experiments can be a time-consuming task, further explo-
ration is done trough Response Surface Models [MMAC08], a mathematical
approximation methodology that predicts values based on the experiments
calculated by the DOE.
There exist many kind of DOE methods where all can be classified into two
categories: Orthogonal designs and Random designs.

Orthogonal designs: The experimental plan is built by selecting orthog-
onal points in the design space. As such the factors in an experiment are
uncorrelated and can be varied independently of each other. Widely used
methods are fractional, full-factorial designs, central composite designs and
Box-Behnken designs. The disadvantage of these methods is the potential
danger of creating many useless experiments if one of the factors turns out
to have no influence on the design.

Random designs: The points in the design space are chosen based on
a random process. The most common used random DOE is the so-called
Latin Hypercube Design (LHD). Random DOE methods do not create useless
experiments as if one factor appears unimportant, the others will still give
information on the responses.

3.2. DESIGN EXPLORATION ITERATIONS 23

For clarifying the topic on DOE methods, below we highlight two of the more
commonly used DOE methods: Full factorial methods and Latin Hyper Cube
methods.

Full Factorial Design

In a full factorial design, every setting of every factor appears with every
setting of every other factor. As such the effects of multiple factors are
investigated simultaneously and the effects of each factor are independent of
the remaining factors. The number of experiments in a full factorial design
can be calculated through the formula

N =
k∏
1

ni, i = 1, ..., k (3.1)

where N is the number of required experiments, k the number of factors and
ni the number of levels for a certain factor i.

Two Level Full Factorial In a two level full factorial, the level of all
input factors is set at 2 and as such the number of experiments for this type
of DOE is 2k. The DOE method will automatically assign the extreme values
of the input domain to a factor. If we were to sample 3 input factors, we can
visualize the design of this experimental plan as a cube as shown in figure
3.1.

Figure 3.1: Two level full factorial design for 3 input factors.

A two level full factorial is not that powerful in that it is only capable of
sampling linear mathematical models as in

Y = α0 +
k∑

i=1

αiXi (3.2)

24 CHAPTER 3. CAE ITERATIONS

.

Three Level Full Factorial For sampling more complex mathematical
models such as second order models, we need more levels, at least 3. Conse-
quently quadratic models as presented in the following formula

Y = α0 +
k∑

i=1

αiX
2
i +

k∑
i=1

αiiX
2
i +

k−1∑
i=1

k∑
j=i+1

αijXiXj (3.3)

are ideally modeled with a three level full factorial. Figure 3.2 and 3.3 vi-
sualize the layout in the design space for a three level full factorial of 2
respectively 3 factors.

Figure 3.2: Three level full factorial design for 2 input factors.

Figure 3.3: Three level full factorial design for 3 input factors.

3.2. DESIGN EXPLORATION ITERATIONS 25

Adjustable Full Factorial In several scenarios, the above DOE methods
will actually perform too many experiments. Take for example the following
formula:

Y = α0 + α1X1 + α2X2 + α3X
2
1 . (3.4)

Since this equation is of second order, we might argue that we need a three
level full factorial resulting in 32 = 9 experiments. However, careful readers
notice that only factor X1 has a quadratic effect on the response whereas
factor X2 has just a linear effect. Fortunately and also deductible from
equation 3.1, we are allowed to assign different levels to different factors. In
this case we set factor X1 to level 3 and factor X2 to level 2 resulting in just
6 experiments.

Latin-Hypercube design

A Latin-Hypercube DOE method belongs to the category of random meth-
ods, that is the design points are chosen based on a random process. However,
we do not want our design points to be completely random, as this can lead to
a design filled with clustered points, which is not an interesting situation for
exploration purposes. Instead we want points that are as much space-filling
as possible. In statistical sampling, structured randomization is achieved
through a Latin square, which is defined as a grid containing sample posi-
tions, if and only if there is only one sample in each row and each column.
A Latin-hypercube DOE will generalize this idea in multiple dimensions by
forcing only one sample on each axis-aligned hyper plane.

In practice

Let us take a look at how exactly a Design of experiments can help us in
exploring the design. We will apply a Latin-Hypercube experimental plan
of 100 experiments on the Pennsylvania bridge case in order to get an idea
how the three sections influence the different performance attributes. The
complete summary of results is listed in Appendix B.1. Figure 3.4 shows
two interesting plots for the resulting Latin-Hypercube. On the left (3.4(a))
we have a graphical matrix overview mainly in scatter formation, giving us
information about the influence of each design variable on any other. On
the right hand side (3.4(b)) we have the numerical equivalent giving us a
correlation value between -1 and 1. Reading or viewing through the different
cells of the plots, we can deduct important information such as linearity be-
tween inputs and outputs. For example, we clearly see how section 3 has a

26 CHAPTER 3. CAE ITERATIONS

(a) Correlation scatter plot (b) Correlation values plot

Figure 3.4: Latin-Hypercube plotting for the Pennsylvania bridge case

strong linear relation with performance attribute mass and a somewhat less
(-0.729) linear relation with maximum displacement. Section 2 has an influ-
ence on both maximum stress and maximum displacement whereas section
1 compared to the other two inputs, has almost no influence at all on the
three outputs.

3.3 Numerical optimization iterations

A second discipline in design automation is the search for optimality in the
virtual design. Optimization is an active research area not just in engineer-
ing, but in economics and mathematics as well. The objective of optimization
is the search for extrema that are apparent in the model, once or many times,
locally or globally. In Optimus, intelligent optimization algorithms seek au-
tomatically the optimal value for one or many manually specified objectives.
The objective can be to minimize or maximize a function satisfying a num-
ber of constraints. When a feasible solution is found, the objective function
is called an optimal solution. With these tools, an engineer is capable of
e.g. studying how to minimize the mass of a car given a range of variables
with specified constraints.

3.3. NUMERICAL OPTIMIZATION ITERATIONS 27

Optimization algorithms can be classified by number of objectives: single-
objective optimization ormulti-objective optimization, and by search
scope, resulting in either local optimization methods or global opti-
mization methods. As with the description of DOE methods, we will only
highlight the most commonly used algorithms.

3.3.1 Single-objective optimization

Single objective optimization methods have only one objective. As such, the
goal of single-objective optimization is to find an optimum point within the
specified domain satisfying a number of constraints.

Local optimization methods

Local optimization methods only use the local information, such as gradient
information, from the objective function to search for extrema. As such, the
global structure of the objective function is unknown to the local method.
The advantage of this approach is that it has a fast convergence time. The
disadvantage however, is that the property of locality causes only local ex-
trema to be found, which might not be an extremum for the global function.
We say that the algorithm gets trapped into local minima or maxima.

Sequential Quadratic Programming This algorithm finds one optimal
local solution for non-linear constrained problems. The method is an approx-
imation search algorithm based on Newton’s method with the added possi-
bility of satisfying constraints. The latter is done with the mathematical
theory of Lagrangian. The basic idea of the method involves in formulating
a quadratic programming sub problem in each iteration which is obtained by
linearizing the constraints and approximating the Lagrangian function. The
quadratic sub problem is than solved using Newton’s method. For a more
detailed description we refer the user to [Sto85] and [P.93].

Global optimization methods

Global optimization methods try to find the absolute best point in the ob-
jective function. Not surprisingly, since an objective function can have many
local extrema, finding a global optimum is a lot more challenging. Global
optimization algorithms have the advantage not to get trapped in local ex-
trema like local optimizations do, but this comes with an expensive cost of

28 CHAPTER 3. CAE ITERATIONS

having to perform a big amount of experiments. It is therefore advised to use
global optimization algorithms only when there is little knowledge about the
design space. Heuristic search methods, such as evolutionary algorithms and
simulated annealing, are accepted as the best solution to global optimization
problems.

Evolutionary algorithms [Bey98] are heuristic optimization algorithms
inspired by biological evolution. Indeed to find an optimal solution, EA
algorithms will use genetic operators such as reproduction, mutation, recom-
bination and selection. These operators are applied to an initial population
of solutions evolving into an optimal solution.

3.3.2 Multi-objective optimization

In many cases, we will have more than one objective to minimize or maximize.
These objectives can be conflicting; therefore a trade-off between the crite-
ria is necessary to ensure a satisfactory design. Depending on the number
of suggested solutions, we can further subdivide multi-object optimization
algorithms in those that generate a so-called Pareto front (see further); gen-
erating a set of feasible objectives and those algorithms that present one
compromised solution between the different objectives.

Pareto-front methods

A Pareto front (see figure 3.5) is the border continuous line plotted in the
objective function space denoting possible optimal combinations of objective
values. Decreasing the value of one objective while keeping the other one
constant, will move the design point into the infeasible domain, whereas
increasing the objective while keeping the other one constant, will make the
design point non-optimal.
Methods in this category will therefore generate a Pareto front by assignment
of weight combinations to the objectives. One algorithm will mainly differ
by another in the way the Pareto front is constructed.

Compromised methods

Instead of generating a Pareto front, multi-objective optimization algorithms
in this category will find one compromised solution. There are different ways

3.3. NUMERICAL OPTIMIZATION ITERATIONS 29

Figure 3.5: Pareto front.

to achieve this. For example a trade-off method will convert a multi-
objective optimization problem into a single objective optimization problem
by selecting one objective as primary objective while treating the other objec-
tives as constraints. Another possibility is to let the user rank the objectives
by importance as is done in the hierarchical method. Each objective func-
tion is then minimized individually but with the added constraint that the
new minimum cannot exceed a prescribed fraction of the previous objective
function.

3.3.3 In practice

Again to exemplify the theory, we experimented with Optimus and per-
formed three optimizations on the Pennsylvania bridge. We have slightly
adapted the workflow to include a fourth output which we will call Cost
and that will be depending on Mass and Maximum stress with the formula:
Cost=1.89*Mass+4.4e-5*Max_Stress. The adapted workflow is depicted in
figure 3.6(a). Our objective was to minimize Cost as much as possible. This
minimization is achieved by applying three optimizations on it. We started
with a local sequential quadratic programming optimization (SQP). The re-
sulting value as seen in the optimum plot (figure 3.6(b)) was 1.110E04. The
optimization needed in total 55 experiments as is seen in Appendix B.2.1 and
in the optimum plot in the second column’s caption. Then we applied a sec-
ond optimization with the same objective, only this time using a global self
adaptive evolution (SAE) which is a genetic algorithm. The resulting value

30 CHAPTER 3. CAE ITERATIONS

as seen in the optimum plot in figure 3.6(c) has been lowered to 1.099E04.
However it took the algorithm 349 experiments to get to this minimal value as
seen in Appendix B.2.2. Finally we applied again a local sequential quadratic
optimization algorithm, only this time starting from the input values that
generated the optimal value for the SAE algorithm. These values are for
section 1,2 and 3 respectively 3.103E-03, 4.011E-03 and 2.505E-03. The idea
is to see if we can further fine-tune to an even smaller value. And indeed,
after having performed an additional 14 experiments (see Appendix B.2.3),
SQP resulted an optimal value of 1.098E04 as seen in figure 3.6(d).

3.3. NUMERICAL OPTIMIZATION ITERATIONS 31

(a) Adapted workflow Pennsylvania bridge case with added output Cost

(b) SQP Optimum plot for Pennsylvania
bridge case resulting in Cost optimal value
of 1.110E04

(c) SAE Optimum plot for Pennsylvania
bridge case resulting in Cost optimal value
of 1.099E04

(d) SQP Optimum plot for Pennsylvania
bridge case (starting from optimal SAE
value) resulting in Cost optimal value of
1.098E04

Figure 3.6: Optimization in practice

32 CHAPTER 3. CAE ITERATIONS

3.4 Robustness and reliability iterations

3.4.1 Introduction

After having explored the design space and after hunting for optimality, we
need to evaluate the robustness and reliability (R&R) [NdPJS03] of the de-
sign. The problem is in a way a bit cynic, that is, by trying to speed up
the design process through virtual prototyping and simulation, we introduce
possible problematic behaviors. The reason is of course that CAE can only
simulate reality to a certain extent. Our virtual model differs by some de-
gree with the model in reality. After all, we use techniques such as meshing
where we discretize the design. As such a simulation output will always yield
the same result given the same input values. In real life however, there is a
certain variability on parameters where each same value might give a differ-
ent result. This can have different reasons; take for example environmental
condition influences or structural degradation (ageing, fatigue, damage ...).

Robust design is then defined as the discipline to study the degree to
which a system or component can function correctly in the presence of invalid
inputs or stressful environment conditions. We want to study the sensitivity
of outputs to inputs variability. A useful measurement for robust design will
be the standard deviation.

Reliability analysis is the discipline that aims to define the probability
that a failure is attained as a result of input variability. This can be mea-
sured by the failure probability and the reliability index.

Figure 3.7 shows in more detail how R&R works. Figure 3.7(a) depicts a
scenario for a car where we study the influence of the thickness of the car’s
panel in function of the total cost of that car. We notice that if we take a
very small thickness that our cost will rise significantly due to the resulting
production of an instable car, which will lead to lowered sales, law suits and
company image loss. Taking our thickness too high, will lead to increased
manufacturing costs as we need more material, increased use of gas etc ... In
figure 3.7(b) a rasterized zone is depicted to highlight that any cost that falls
into this zone is inacceptable. If we now take a first variability into account
for our panel thickness called σx as seen in figure 3.7(b) in red and analyze
the resulting σy it teaches us that the standard deviation is too big and that
furthermore there is an inacceptable risk that some of the values fall in the

3.4. ROBUSTNESS AND RELIABILITY ITERATIONS 33

forbidden failure zone. We say that the design is neither robust nor reliable.
Then by simply moving the distribution to the right on the x-axis, we reveal
an interesting result as seen in green in figure 3.7(b). Suddenly the standard
deviation became much smaller and none of the values fall into the forbidden
zone. The design has become both robust and reliable.

(a) Cost function: x-axis = panel thickness,
y-axis = cost of car

(b) Robustness and reliability

Figure 3.7:
Robustness and reliability study on cost level per car in function of panel
thickness.

3.4.2 Monte-Carlo Method

One of the more popular techniques for the study of robustness and reliabilty
is the Monte-Carlo Method: a sampling method that performs a number
of simulations with randomly selected parameter combinations for the given
distribution and calculates the standard deviation through formula 3.5.

σy =

√√√√ 1

N − 1

N∑
i=1

(yi − y)2 (3.5)

As mentioned, the standard deviation is a measurement for the study of ro-
bustness only. To study the reliability we need the probability of failure.
This can be easility calculated through a Monte-Carlo method through for-
mula 3.6, where Pf is the probility of failure, Nf denotes the number of failed
samples and N the total number of trials.

Pf =
Nf

N
(3.6)

34 CHAPTER 3. CAE ITERATIONS

3.4.3 In practice

We will evaluate the robustness and reliability of the stress on a single beam
(beam 28 to be precise) by incorporating a variability on section 1. Our new
workflow will look as in figure 3.8.

Figure 3.8: Workflow for robustness and reliability study on beam 28.

To put a variability on section1, in Optimus, we can assign it a distribution.
In this example we will assign a normal distribution with a low bound of
-0.0001. This distribution is depicted in figure 3.9.

Figure 3.9: Normal distribution on section 1 with low bound −0.0001.

Finally we need to put a constraint on beam 28, if we want to study its
reliability. For this example we choose a high constraint of 1.2E8. Now that
the workflow, distribution and constraints are set up, we can apply a Monte-
Carlo method. The resulting experiments are displayed in Appendix B.3.
Assessment of robustness and reliability is now achieved by post-processing
the Monte-Carlo method with Histogram plots. .
First of all notice in figure 3.10 how the resulting distribution on section 1 is

3.4. ROBUSTNESS AND RELIABILITY ITERATIONS 35

Figure 3.10: Histogram plot for section 1

Figure 3.11: Histogram plot for beam 28

indeed conforming to our specified normal distribution with low bound.
From figure 3.11 we see that our standard deviation is 6.23456E06 and our
mean value is 1.19458E08. Given the closeness in magnitude of both values,
we can deduct that the response distribution is too widespread and hence

36 CHAPTER 3. CAE ITERATIONS

our design is not robust. Furthermore the orange bars in the histogram all
show experiments response values in the infeasible domain. Given the huge
amount (almost 50%) of infeasible experiments, we can conclude that our
design is not reliable.

Chapter 4

CAE Patterns

4.1 Introduction

Now that we have a good idea of what kind of iterations the CAE domain has
to offer, we need to analyse these iterations for commonality and variability,
thus defining abstractions and creating patterns. We translate the iterations
as seen from the structural engineer into patterns as seen by the software
engineer. As such a pattern suitable for modelling an iteration should be seen
just like a classical design pattern like those from the gang of four [GHJV94].
We provide elementary building blocks in a workflow system built upon the
existing workflow elements, that allow to construct an iteration independent
on the type of iteration. To give an example, the structural engineer can use
our pattern to construct a random design of experiments iterating over the
analysis.

4.2 Pattern definition

A pattern will be uniquely defined by its structure and internal iteration
data. Below we have listed the properties that a pattern structure has to
comply to.

4.2.1 Pattern structure

Below, we present a number of properties that together uniquely define each
pattern. These properties will return in the description of a pattern.

37

38 CHAPTER 4. CAE PATTERNS

Property 1 - External versus internal iteration structure: We
call the external structure of an iteration the construct of repetition
whereas the internal structure is the construct within one step of the
iteration. This is comparable to the structure of loops within program-
ming languages, where the external structure of a while loop is the
statement inside the while header, whereas the internal structure is the
while body.

Property 2 - Abstraction level: A CAE pattern will provide ab-
straction both on the external structure as on the internal structure.
The external structure abstracts over a class of iterations such as op-
timizations or design of experiments, whereas the internal structure
allows to abstract over the type of iteration in one class. The latter is
done by providing specific placeholders inside one abstraction. For ex-
ample a design of experiments differs from an optimization in external
structure, hence the user will be using two different patterns, while a
self-adaptive evolution optimization differs from a sequential quadratic
programming in internal structure, hence the user will be using the
same pattern, but providing different placeholder implementations.

Property 3 - Separation of function and function caller: In
classical iteration algorithms, function evaluation is done inside the al-
gorithm itself. Usually this is achieved by using some kind of expression
language for representing the function as a string. These kinds of iter-
ations are closed systems: they generate values, evaluate the function
with those new values and check the condition of the iteration. This
kind of closed system is not possible in CAE iterations. We do not
have just a plain function, but a complete analysis represented as a
workflow of business processess. Therefore the function is completely
hidden and unknown to us. We will solve this by providing seperate
placeholders for function value generation and function evaluation.

Property 4 - Pattern nesting: This refers to the possibility of one
pattern reusing the other internally. Just like we can write a for-loop
inside a while-loop, it should be possible for one CAE pattern to use
another one inside its internal structure. We can refer to this as the
level of the pattern.

Property 5 - Service oriented: The placeholders inside a pattern
allow for customizability of the pattern. Of course, customizability
can be achieved by allowing simple components to be plugged into
the system such as jar files or dynamic libraries. However to gain the

4.3. PATTERN 1: ANALYSIS PATTERN 39

benefits of collaboration and network-based programming we view our
placeholders as entry points for web services thus applying to the service
oriented architecture.

4.2.2 Pattern data

Several iteration data members will be present in the iteration. This data
can either be exposed to or hidden from the user. Data that is exposed
to the user should have clear semantics for example written in xsd schema
[TBMM04] [BM04].
Two types of data will be explicitely exposed, that is the definition of an
input and output. They can be represented in the xsd schema language as
follows:

Listing 4.1: Input variable xsd schema definition
1 <complexType name="Input">
2 <sequence >
3 <element name="Nominal" type="double"></

element >
4 <element name="Low" type="double"></element >
5 <element name="High" type="double"></element >
6 </sequence >
7 </complexType >

Listing 4.2: Output variable xsd schema definition
1 <complexType name="Output">
2 <sequence >
3 <element name="Value" type="double"></element

>
4 </sequence >
5 </complexType >

Using type Input and Output, we can create our analysis workflow. We as-
sume for our patterns the existence of the possibility to create such workflow
with connected inputs and outputs.

4.3 Pattern 1: Analysis pattern

The analysis pattern allows us to model and execute some analysis workflow.
The pattern assumes the existence of activity elements connected together

40 CHAPTER 4. CAE PATTERNS

that represent this workflow. The pattern expects a number of variables of
type Input at the start of the analysis together with a number of variables
of type Output at the end of the analysis. Example implementations of the
analysis pattern include simple formulas such as calculating the square of a
value, but might just as well represent an entire workflow as the one from
the Pennsylvania bridge case.

4.3.1 Structure

Figure 4.1 shows an ActiveVOS [End09] modeled representation of the analy-
sis pattern having three inputs and two outputs. We do not make a difference
between external or internal structure since this pattern executes only once.

Figure 4.1: Structural representation of the analysis pattern.

4.3. PATTERN 1: ANALYSIS PATTERN 41

4.3.2 Pattern nesting

Since this pattern contains no looping constructs and does not use any other
patterns, we assign this pattern level 1.

4.3.3 Pattern data
The list below summarizes the data usage within the analysis pattern. For
each member we provide a name, type, occurence and description.

Input variable:

Name: InputVar

Type: Type = Input

Occurences: Unlimited

Description: This input data is defined in the analysis pattern, but is globally available. All paterns
can at any time access the information about Inputs.

Output variable:

Name: OutputVar

Type: Type = Output

Occurences: Unlimited

Description: As for the Input data, outputs are first defined in the analysis pattern, but are exposed
globally.

Pattern input:

Name: PatternInput

Type: List of double

Size: Number of Input variables

Occurences: 1

Description: The analysis pattern expects as input a list of double values with the same size as the
number of defined Input variables. This member is used as input to the analysis placeholder.

Analysis web service input:

Name: AnalysisInput

Type: List of double

Size: Number of Input variables

Occurences: 1

Description: The external web service expects as input a list of double values with exactly the same
contract as the pattern input variable.

Analysis web service output:

Name: AnalysisOutput

Type: List of double

Size: Number of Output variables

Occurences: 1

Description: The external web service responds with a list of double with the same size as the number
of defined output variables. This list is copied into the pattern output variable.

Pattern output:

Name: PatternOutput

Type: List of double

Size: Number of Output variables

Occurences: 1

Description: The analysis pattern responds to its caller with a list of double values with the same
contract as the analysis placeholder.

42 CHAPTER 4. CAE PATTERNS

4.3.4 Analysis placeholder

We can have an unlimited number of placeholders that together represent the
analysis workflow. Figure 4.1 shows just one activity or web service called
analysis, but in reality this can be a complete workflow of connected web
services. The input to the analysis workflow should be list of Inputs equal
to the number of connected input variables. The output of the web service
should be a list of outputs equal to the number of connected output variables.

4.3.5 Execution

The input to the pattern is a list of Input values equal to the number of
Input variables in this pattern. Using a BPEL copy statement, we will assign
these incoming pattern values to the pattern Input variables to make those
values globally available. Secondly we use BPEL’s copy action again to put
the assigned Input variable values to the web service input contract. For
example the BPEL code below assigns the first pattern input value into the
first input variable and then copies the input variable value into the first list
item of the analyis web service input contract.

Listing 4.3: BPEL copy of pattern input to analysis input
1 <bpel:copy >
2 <bpel:from >$PatternInput/ArrayOfDouble [1]</bpel:from >
3 <bpel:to variable="Input1">
4 <bpel:query >types1:Nominal </bpel:query >
5 </bpel:to >
6 </bpel:copy >
7 <bpel:copy >
8 <bpel:from variable="Input1">
9 <bpel:query >types1:Nominal </bpel:query >
10 </bpel:from >
11 <bpel:to variable="AnalysisInput">
12 <bpel:query >ns1:inputValues/double [1]</

bpel:query >
13 </bpel:to >
14 </bpel:copy >

These assignments actions will be repeated for the length of the pattern
input list.
Next we invoke the actual analysis, which could be a workflow, but for the
sake of simplification, that workflow is replaced by one external web service.

4.4. PATTERN 2: EXPERIMENT LOOP PATTERN 43

Using BPEL we will invoke the web service through the following invoke
action:

Listing 4.4: Invoking the analysis web service
1 <bpel:invoke inputVariable="AnalysisInput" name="

WebService_Name"
2 operation="Some_Operation" outputVariable="

AnalysisOutput"
3 partnerLink="External_Provider" />

We retreive into AnalysisOutput a list of values that now need to be assigned
to the iteration Output variables. Again this is achieved using BPEL copy
statements. The pattern ends it execution by responding to the outside world
with a list containing the resulting analysis output values.

Listing 4.5: BPEL copy of analysis output to pattern output
1 <bpel:copy >
2 <bpel:from >$AnalysisOutput/ArrayOfDouble [1]</

bpel:from >
3 <bpel:to variable="Output1">
4 <bpel:query >types1:Value </bpel:query >
5 </bpel:to >
6 </bpel:copy >
7 <bpel:copy >
8 <bpel:from variable="Output1">
9 <bpel:query >types1:Value </bpel:query >
10 </bpel:from >
11 <bpel:to >$PatternOutput/ArrayOfDouble [1]</bpel:to >
12 </bpel:copy >

4.4 Pattern 2: Experiment loop pattern

This pattern is capable of enumerating, given a matrix of input values, over
the matrix with a for-each loop construct, feeding one by one the next row
of the matrix to the analysis workflow, collecting all resulting values into a
summary.

4.4.1 Pattern structure

Using ActiveVOS, we can model the structure of this pattern as in figure 4.2.

44 CHAPTER 4. CAE PATTERNS

Figure 4.2: Structural representation of the experiment loop pattern.

The internal structure is one instance of the analysis pattern, whereas the ex-
ternal structure contains the experiment generator placeholder and a for-each
loop construct to iterate a pre-determined times over the analysis pattern
collecting all resulting analysis pattern output lists into a summary variable.

4.4.2 Pattern nesting

Level 2 since it composes a second pattern, the analysis pattern, in its internal
structure. The pattern behaves as a container for the analysis pattern.

4.4. PATTERN 2: EXPERIMENT LOOP PATTERN 45

4.4.3 Placeholders

The experiment generator placeholder: this placeholder is responsible
for generating a matrix of input values that will be handled by the for-each
container.

The analysis pattern: this placeholder expects an instance of the analysis
pattern reponsible for evaluating one row of input values.

Pattern data

The list below summarizes the data usage within the experiment loop pattern.
For each member we provide a name, type, occurence and description.

Pattern input: None.

Experiment generator input: None.

Experiment generator output:

Name: GeneratorOutput

Type: Matrix of Double

Column Size: Number of Input variables

Row Size: Undetermined

Occurences: 1

Description: The experiment generator placeholder responds with a matrix of double values that
should get fed to the internal for-each structure of the pattern.

Experiment counter:

Name: ExperimentCounter

Type: Integer

Occurences: 1

Description: Simple counter that gets increased at each step within the for-each construct.

Pattern output:

Name: Summary

Type: Matrix of Double

Column Size: Number of Input + Output variables

Row Size: ExperimentCounter

Occurences: 1

Description: Into this summary variable, we collect all results retreived from the analysis pattern.

46 CHAPTER 4. CAE PATTERNS

4.4.4 Execution

The pattern does not expect any input. It will directly invoke the experiment
generator web service. When the web service has finished, the resulting
matrix of input values will be present in the experiment generator output
variable. Next, the for-each loop will start which can be modelled in BPEL
using a for-each statement. A BPEL for-each expression uses an internal
counter (corresponding to our experiment counter) and needs to know the
start counter value and maximum counter value. We will always start from 1
and loop until the counter has reached the length of the experiment generator
output variable.

Listing 4.6: BPEL for-each construct
1 <bpel:forEach counterName="ExperimentCounter" parallel="

no">
2 <bpel:startCounterValue >1</bpel:startCounterValue >
3 <bpel:finalCounterValue >count($GeneratorOutput)</

bpel:finalCounterValue >
4 <bpel:scope >
5 ...
6 </bpel:scope >
7 </bpel:forEach >

In the BPEL scope statement we will execute the analysis pattern. One way
of doing this is by viewing the analysis pattern as a web service. This way
we can assign all pattern values and invoke accordingly. We can use the
currenct experiment counter to retreive the next set of input values from the
GeneratorOutput variable.

Listing 4.7: BPEL copy from experiment generator output to analysis pattern
input

1 <bpel:copy >
2 <bpel:from >$GeneratorOutput [$ ExperimentCounter]/

ArrayOfDouble [1]</bpel:from >
3 <bpel:to >$AnalysisPatternInput/ArrayOfDouble [1]</

bpel:to >
4 </bpel:copy >

The analysis pattern as we know will answer with a variable PatternOutput,
which is a list of doubles. We collect all these resulting analysis lists into one
big matrix, which will yield the output of the experiment loop pattern.

4.4. PATTERN 2: EXPERIMENT LOOP PATTERN 47

Listing 4.8: BPEL copy from analysis output to experiment loop summary
1 <bpel:copy >
2 <bpel:from >\$ AnalysisPatternOutput </bpel:from >
3 <bpel:to >\$ Summary [\$ ExperimentCounter]</bpel:to >
4 </bpel:copy >

4.4.5 Random experiment loop pattern

We can model Monte-Carlo methods, DOE’s and Table methods with an
experiment loop pattern. However for those methods that generate random
numbers, that is Monte-Carlo methods and Random DOE’s, we need to make
a slight adaptation in the data usage of the experiment loop pattern. We
need to proivde the number of row values that should be generated by those
random methods. This information is unneeded for non-random methods be-
cause the number of experiments is generated based on the number of inputs
and the generator algorithm itself (see Section 3.2.2).
This pattern inherits from the normal experiment pattern and adapts the
data usage as follows:

Pattern input:

Name: NumberOfExperiments

Type: Integer

Occurences: 1

Description: We ask as input to the pattern a number of experiments that should get generated by
the experiment generator placeholder.

Experiment generator input:

Name: GeneratorInput

Type: Integer

Occurences: 1

Description: The experiment generator placeholder input expects a number of experiments. This
information is retreived from the NumberOfExperiments variable in the pattern input.

4.4.6 Iteration mapping

Table methods, Design of experiments and Monte-Carlo methods all gener-
ate their input values in a deterministic way. We state that these iterations
can thus be modelled using the experiment loop pattern. We implement
this input generation using the experiment generator placeholder. Since this
placeholder is in the external structure of the pattern, thus outside of and
prior to the internal loop, determinism is preserved.

48 CHAPTER 4. CAE PATTERNS

Within these iterations we further differentiate Table methods and Non-
Random Design of Experiments from Random Design of Experiments and
Monte-Carlo methods. Table methods and Non-Random DOE’s designs can
be modelled using the classical experiment loop pattern. Random DOE’s
and Monte-Carlo methods should be modelled using the manual experiment
loop pattern.

4.5 Pattern 3: Optimization loop pattern

The optimization loop pattern is capable of modeling all optimization al-
gorithms by providing a suitable algorithm that fits into the pattern and
providing a stop condition to the pattern. The pattern will repeatedly ex-
ecute the experiment loop pattern until the stop condition is satisfied. We
call one execution of the experiment loop pattern, an iteration. All iteration
matrices are collected in a resulting summary.

4.5.1 Problem description

Providing a pattern for optimization is a lot more challenging compared to
modelling DOE’s or Monte-Carlo methods. We can devide the complexity
into two categories. The first one is related to the complex internal structure
of optimization algorithms in general, whereas the second problem is related
to a specific subcategory of local optimizations.

Problem 1: Complex internal structure

This problem is related to the fact that we can no longer ask for just one
set of input values to be executed because the next set is depending on the
outcome of the previous set. In other words, we need to provide information
from the previously executed values to the algorithm before we can start the
next iteration. This means that our pattern will be responsible for providing
to the optimization algorithm as input the set of previously calculated values.

Problem 2: Local optimization algorithms

The problem is related to property 3 in Section 4.2.1 where we explained how
we are forced to have a seperation in function and function caller. For local

4.5. PATTERN 3: OPTIMIZATION LOOP PATTERN 49

optimization algorithms (See Section 3.3.1), this problem goes even further
due to its need for gradient information. Most local optimizations need to
know the derivative of the original function in order to succesfully climb up
or down the problem space. However, since the optimization algorithm does
not and should not know anything about the original function, it cannot
know the derivative function. So then, how can the algorithm decide what
should be the next set of values, how can it decide in what direction to
search? Luckily in the domain of numerical analysis, this can solved by the
application of the finite difference approximation method.
The mathematical trick directly follows from the definition of a derivative in
a point x:

f
′
(x) = lim

h→0

f(x+ h)− f(x)

h
. (4.1)

Instead of taking x and filling it into f ′
(x), we take a very pre-determined

small fixed value h and fill it into the right-hand side of equation 4.1. This
way we approximate the actual derivative value and avoid having to know
about the derivative function.
Note how global optimization alorithms (See Section 3.3.1) will not face this
problem because they do not need use any gradient information. Instead
they provide a set of randomized values based on the result of the previous
set.

4.5.2 Pattern structure

Figure 4.3 shows the structural representation of the optimization loop pat-
tern. The external structure of the pattern consists of a while loop that runs
until one of the two following conditions hold: the maximum number of iter-
ations is reached or the optimization has converged. The latter is specified
through our first placeholder called isConverged. The internal structure con-
sists of an if statement with two branches: the first branch executes only once
that is the very first loop (or more specifically when the iteration counter is
equal to 1), the second branch executes all other times. Both branches con-
tain a placeholder for the experiment loop pattern (see Section 4.4).

4.5.3 Pattern nesting

We assign level 3 to this pattern because it contains in its internal structure
a pattern (the experiment loop pattern) of level 2.

50 CHAPTER 4. CAE PATTERNS

Figure 4.3: Structural representation of the optimization loop pattern.

4.5.4 Placeholders

IsConverged placeholder: External web service that should return a
simple boolean value. When isConverged evaluates to true, the pattern will
end the main iteration loop.

Experiment loop pattern placeholder 1: We provide an instance for the
pattern. As we know from the pattern, instantiating means providing a pla-
cholder for the experiment generator and providing some analysis. Our first
instance in the first branch of the if structure, will implement the placeholder
with an init web service. This service will allow to initialize the optimization
algorithm, expecting a first set of values to be executed by the experiment
loop.

4.5. PATTERN 3: OPTIMIZATION LOOP PATTERN 51

Experiment loop pattern placeholder 2: The second instance in the
second branch of the if structure, will implement its placeholder with the
actual optimization specific logic. This can be any implementation leading
from local, global to multi-objective algorithms. But whatever algorithm
provided, they all provide us the next set of input values that will be passed
to its experiment loop pattern. Note how the first time this placholder runs,
it will use as input the resulting values from the first experiment loop in the
first branch of the if structure.

4.5.5 Pattern data

The list below summarize the data usage within the optimization loop pat-
tern. For each member we provide a name, type, occurence and description.

Pattern input:

Name: NumberOfIterations

Type: Integer

Occurences: 1

Description: Entry point for the pattern, that tells the while structure the maximum number of times
it should run. The pattern can run less than this maximum number when the isConverged placeholder
tells the optimization algorithm it has converged.

While loop counter:

Name: IterationCounter

Type: Integer

Occurences: 1

Description: This variable keeps track of the number of iterations performed so far. It is used by
the if structure to decide which branch to execute and by the while structure to check if the maximum
number of iterations is not yet reached.

IsConverged placholder input: None

IsConverged placeholder output:

Name: IsConvergedOutput

Type: Boolean

Occurences: 1

Description: Contains the result of the invocation of the external IsConverged web service. When the
value results true, the while structure will ends its loop.

Init placeholder input:

Name: InitInput

Type: List of Double

Size: Number of Input variables

Occurences: 1

Description: One of the things the algorithm likes to know is where in the problem domain he should
start the search for the optimal value. Therefore, we pass as input to the init web service, a list of start
values, one for each input variable. By default, we can take the Nominal value specified in the Input
variable definition (see Section 4.2.2).

Init placeholder output:

Name: InitOutput

52 CHAPTER 4. CAE PATTERNS

Type: Matrix of Double

Column Size: Number of Input variables

Row Size: Undetermined

Occurences: 1

Description: As a result from the external Init web service, we retreive a first set of values to be
executed by its experiment loop pattern. For example for a local optimization algorithm, this resulting
matrix will contain in its first row the input values specified in InitInput whereas the next rows contain
the finite differenced values.

Iterate placeholder input:

Name: IterateInput

Type: Matrix of Double

Column Size: Number of Output variables

Row Size: Number of rows retreived from the Summary variable from the experiment loop pattern.

Occurences: 1

Description: We pass to the actual optimization engine (again an external web service), the values
calculated by the experiment loop pattern. Recall from Section 4.4.3 that the experiment loop pattern
collects all its calculated values into one big summary. We use this information to pass as input to Iterate
placeholder, so that the optimization engine can decide based on this information where to go to next in
his problem domain, hence gradually converting to the optimal value.

Iterate placeholder output:

Name: IterateOutput

Type: Matrix of Double

Column Size: Number of Input variables

Row Size: Undetermined

Occurences: 1

Description: Exactly the same structure as the InitOutput variable. Indeed, it provides the same kind
of information. It gives us the next set of input values to be executed by the experiment loop pattern.

Pattern output:

Name: Summary

Type: Matrix of Double

Column Size: Number of Input + Output variables

Row Size: Sum of all ExperimentCounteri where is the iteration counter.

Occurences: 1

Description: This variable collects all summaries from all experiment loop pattern runs together.

4.5.6 Execution

The pattern expects in its input a maximum number of times the while
structure should execute its internal structure. A current iteration counter
will be held into the IterationCounter variable. The while structure itself can
be modeled using a BPEL while construct. The required field for a BPEL
while construct is a BPEL condidtion. The BPEL code listing below shows
how it is written for our pattern.

4.5. PATTERN 3: OPTIMIZATION LOOP PATTERN 53

Listing 4.9: BPEL while construct and invocation of the IsConverged web
service

1 <bpel:while >
2 <bpel:condition >$IterationCounter < $

NumberOfIterations and not($IsConvergedOutput = "true
")</bpel:condition >

3 <bpel:flow >
4 <bpel:invoke inputVariable="IsConvergedInput" name="

IsConverged" operation="hasConverged"
5 outputVariable="

IsConvergedOutput"
6 partnerLink="Some_Provider">
7 </bpel:invoke >
8 ...
9 </bpel:flow >
10 </bpel:while >

Line number 2 shows us the XPath [CD99] expression for the header of the
while construct and line 4 shows the invocation of the external IsConverged
web service. The latter will be executed as a first step within the while body.
Next we model our if structure with a BPEL if construct where the first
branch executes only when the iteration counter is 1 as seen in the piece of
code below:

Listing 4.10: BPEL if-else construct
1 <bpel:if >
2 <bpel:condition >$IterationCounter = 1</bpel:condition >
3 <bpel:flow >
4 ...
5 </bpel:flow >
6 <bpel:else >
7 <bpel:flow >
8 ...
9 </bpel:flow >
10 </bpel:else >
11 </bpel:if >

If we are in the if branch, we invoke the init service with a set of start values
equal to the number of inputs and retreive a matrix of values. From here
we execute the experiment loop pattern which is described in Section 4.4.4,
hence we do not repeat its code. If we are in the else branch, we invoke
the Iterate placeholder and pass as information the matrix of previously

54 CHAPTER 4. CAE PATTERNS

calculated values. Then again executing the experiment loop pattern with
the result of the Iterate web service.

Listing 4.11: BPEL copy from experiment loop output to iterate web service
input

1 ...
2 <bpel:else >
3 <bpel:copy >
4 <bpel:from variable="ExperimentLoopOutput" />
5 <bpel:to variable="IterateInput" />
6 </bpel:copy >
7 <bpel:invoke inputVariable="IterateInput" name="

Iterate" operation="iterate"
8 outputVariable="IterateOutput"
9 partnerLink="Provider1">
10 </bpel:invoke >
11 <bpel:copy >
12 <bpel:from variable="IterateOutput" />
13 <bpel:to variable="ExperimentLoopInput" />
14 </bpel:copy >
15 <bpel:forEach counterName="ExperimentCounter"

parallel="no">
16 ...
17 </bpel:forEach >
18 </bpel:else >
19 ...

At the end of each iteration we collect the summary from the experiment
loop pattern and put into our collective summary for the optimization loop
pattern as in the code below:

Listing 4.12: BPEL copy from experiment loop output to optimization loop
summary

1 <bpel:copy >
2 <bpel:from >$ExperimentLoopOutput </bpel:from >
3 <bpel:to >$Summary [$ IterationCounter]</bpel:to >
4 </bpel:copy >

4.5.7 Iteration mapping

In our research we have studied the internal structure of optimization algo-
rithms. This structure can be decomposed into four structures: a while-loop

4.5. PATTERN 3: OPTIMIZATION LOOP PATTERN 55

construct, a convergence check, an initialization step and the generation of
input values. These four constructs are seperate entities in our pattern.
Therefore we state that all optimizations following the same structure can
be modelled using the optimization loop pattern. The challenge occurs in
the generation of input values.
First of all this generation is non-deterministic. This means we should place
our generator placeholder in the pattern’s internal structure. The place-
holder is then integrated in the while loop and previous function values can
be passed as input information to the placeholder.
Secondly, an optimization should be capable of generating a set of input val-
ues without knowledge of the original function or derivative function. Global
optimizatons such as evolutionary algorithms meet these requirements be-
cause they evaluate the fitness based on global function information only.
Local optimizations will need adaptation if they are tightly coupled with the
derivative function. They need to change their gradient calculation from an
analyis-based gradient method to a finite difference approximation method.
We will show how this can be done in Section 5.4.

Chapter 5

Proof of concept implementations

5.1 Introduction

In this chapter we will provide implementations for the proposed patterns
to proof that the concept is correct and usable. In Section 5.3 we will im-
plement the experiment loop pattern and in Section 5.4, we will make an
implementation for the Optimization loop pattern. Various programming
languages and frameworks are used to make these implementations ranging
from Java [GJSB00] and Axis Web Services [PR09] to .NET [Pla03] and
ASP.NET [Esp08].

5.2 Analysis pattern:

5.2.1 Example 1: Squared function

Since this is our first pattern, let us not make it too complex. We will use
one Input variable and one Output variable. Let us simply take the squared
function: f(x) = x2. Note how the function correctly maps to the number of
Input variables in our worklow. We will implement the analysis placeholder
as an external web service. Different technologies exist out there and for this
example we have used Java(1.6) together with Axis Web Services(1.4) to
implement and generate the web service. The squared function is written in
Java as in the code below. We expect one double value in its input argument
to map on AnalysisInput and one double value to map on AnalysisOutput.

57

58 CHAPTER 5. PROOF OF CONCEPT IMPLEMENTATIONS

Listing 5.1: Squared function implementation
1 public double squareValue(double value) {
2 return value * value;
3 }

Using Axis Web Services, we can then generate the description WSDL
[CCMW01] file that provides us the contract for the web service. This WSDL
is the binding between our pattern and the external web service. The gener-
ated WSDL file is listed in Appendix C.1.1. From within our analysis pattern
we can then invoke the squared function as follows:

Listing 5.2: Invoking the squared function web service
1 <bpel:invoke inputVariable="squareValueRequest" name="

FormulaService"
2 operation="squareValue" outputVariable="

squareValueResponse"
3 partnerLink="Provider" />

We can visualize this analysis implementation through figure 5.1.

Figure 5.1: Structural representation of the Squared Function analysis pat-
tern implementation

5.2.2 Example 2: Rosenbrock function

Now for a more challenging analysis pattern implementation. We will imple-
ment the Rosenbrock function, a non-convex function that is typically used
for testing optimization algorithms due to its complex problem space. The
reason is that the global minimum is located inside a long narrow parabolic
shaped flat valley, making the convergence a lot more difficult (see figure
5.2).

5.2. ANALYSIS PATTERN: 59

Figure 5.2: Plot of the Rosenbrock function of two variables

The generalized version of the Rosenbrock function is defined by:

f(x) =
N−1∑
i=1

[(1− xi)
2 + 100(xi+1 − x2

i)
2] (5.1)

This analysis pattern implementation will be useful later when we implement
the optimization loop pattern in Section 5.4. We will use two Input variables
and one Output variable. This time we have used .NET and ASP.NET to
write the web services for no other reason than to try out different technolo-
gies since that is the beauty of web services: they are language independent.
The piece of code below shows the .NET implementation of the external web
service for the Rosenbrock function:

Listing 5.3: Rosenbrock function implementation
1 [WebMethod]
2 /*
3 * Multi -dimensional Rosenbrock formula
4 * Expecting as input at least 2 inputValues
5 */
6 public double Rosenbrock(double [] inputValues) {
7 double x = 0, y = 0;
8 double result = 0;
9 for (int i = 0; i < inputValues.Length - 1; i++)
10 {
11 x = inputValues[i];
12 y = inputValues[i + 1];

60 CHAPTER 5. PROOF OF CONCEPT IMPLEMENTATIONS

13 result += Math.Pow ((1 - x), 2) + (100 * Math.
Pow((y - Math.Pow(x, 2)), 2));

14 }
15 return result;
16 }

As you can see we generalize over the number of inputs mapping on the
AnalyisInput variable and return one double value mapping on the Analy-
sisOutput variable. Using ASP.NET we can automatically create the WSDL
file as shown in Appendix C.1.2.
Using this WSDL file we can invoke the web service from within the pattern
as follows:

Listing 5.4: Invoking the Rosenbrock function web service
1 <bpel:invoke inputVariable="Rosenbrock" name="Rosenbrock"
2 operation="Rosenbrock" outputVariable="

RosenbrockResponse"
3 partnerLink="Provider" />

Finally we can visualize the implementation using ActiveVOS as shown in
figure 5.3.

Figure 5.3: Structural representation of the Rosenbrock Function analysis
pattern implementation

5.3 Experiment loop pattern

Let us implement the random experiment loop pattern in order to model a
Random Design of Experiments method. In order to make a pattern instance

5.3. EXPERIMENT LOOP PATTERN 61

we need to specify implementations for its placeholders. For the manual
experiment loop pattern this means implementing one analysis pattern and
one experimeng generator placeholder.

5.3.1 The analysis placeholder

For this pattern we will simply reuse the squared function pattern implemen-
tation we have proposed in Section 5.2.1. Recall that this implementation
has one Input and one Output. For the Input we will assign a low value of 0
and a high value of 100.

5.3.2 The experiment generator placeholder

We will provide a simple Random DOE Method generator written in Java
and exposed using Axis. The contract of this web service is directly given by
the pattern. As input we look at the GeneratorInput which is an Integer and
as Output we expect (according to GeneratorOutput) a matrix of Double.
This leads to a possible implementation as given in the code below:

Listing 5.5: Random generator web service implementation
1 public double [][] generateDOE(int num) {
2 double [][] values = new double[inputs.size()][];
3 Random generator = new Random ();
4 for(int i = 0; i < inputs.size(); i++) {
5 values[i] = new double[num];
6 Input input = inputs.get(i);
7 for(int j = 0; j < num; j++) {
8 double value = (double)generator.nextInt

((int)input.high) + generator.
nextDouble () + input.low;

9 values[i][j] = value;
10 }
11 }
12 return values;
13 }

The code generates Random double numbers in the range between the given
low and high of the input. In our case, the resulting matrix of Doubles will
have only one column since we have only one Input defined in the analysis

62 CHAPTER 5. PROOF OF CONCEPT IMPLEMENTATIONS

pattern. Using Axis this code generates the WSDL file as given in Ap-
pendix C.2. Using this binding we can invoke from within the pattern as
follows:

Listing 5.6: Invoking the random generator web service
1 <bpel:invoke inputVariable="generateDOERequest" name="

generateDOE"
2 operation="generateDOE" outputVariable="

generateDOEResponse"
3 partnerLink="Provider" />

5.3.3 Execution

This ends the implementation for the random experiment generator pattern
and allows the complete BPEL process to be run as a web service. Figure
5.4 shows the starting execution point of our implementation. In this exam-

Figure 5.4: Random experiment loop pattern execution

ple we ask to generate 5 experiments. When pressing the "go" button the
pattern will execute five times our squared function and collect all results in
a summary. Using ActiveVOS we can get a global execution overview and
watch the final summary. This is shown in figure 5.5. Notice indeed 5 input
random numbers between 0 and 100 and their corresponding squared values.

5.4. OPTIMIZATION LOOP PATTERN 63

Figure 5.5: ActiveVOS monitoring BPEL process

5.4 Optimization loop pattern

We will implement the optimization loop pattern with an L-BFGS (Limited-
memory Broyden Fletcher Goldfarb-Shanno) optimization algorithm [Boc00]
written in .NET C#. This algorithm is an optimization algorithm belonging
to the category of local optimizations using gradient information to search
for the optimal value. This time we need to provide implementations for 3
placeholders: We should provide the convergence criterium, implement the
initialization experiment loop and provide the actual algorithm core in the
second experiment loop pattern. Remember that using these placeholders we
are able to model any possible optimization algorithm. Let us explain this
in more detail using the following code listing that demonstrates the usage
of the L-BFGS algorithm:

Listing 5.7: L-BFGS Usage
1 static void Main(string [] args)
2 {
3 lbfgs.lbfgsstate state = new lbfgs.lbfgsstate ();

64 CHAPTER 5. PROOF OF CONCEPT IMPLEMENTATIONS

4 double [] s = new double [0 + 2];
5 int n = 2;
6 int m = 2;
7 s[0] = 20;
8 s[1] = 30;
9 lbfgs.minlbfgs(n, m, ref s, 0.0, 0.0, 0.0, 0, 0, ref

state);
10 while (lbfgs.minlbfgsiteration(ref state))
11 {
12 x = state.x[0];
13 y = state.x[1];
14 state.f = Math.Pow((1 - x), 2) + (100 * Math.Pow

((y - Math.Pow(x, 2)), 2));
15 state.g[0] = -2 + (2 * x) - (400 * x * (y - Math.

Pow(x, 2)));
16 state.g[1] = 200 * (y - Math.Pow(x, 2));
17 }
18 }

Line 3-9 intializes the algorithm. Consequently we will use these lines in the
first experiment loop placeholder of the pattern. Line 10 shows the while loop,
which will no longer occur in the pattern implementation since this is the
task of the pattern itself. Furthermore, line 10 performs an actual iteration
in the algorithm and returns whether or not the algorithm has converged.
The statement performs two tasks at once, hence we should split up these
tasks into two seperate responsibilities. The convergence check should be
moved to the IsConverged placeholder and the Iteration should be moved to
the second experiment loop placeholder. This structure is always present in
any algorithm as it defines what an Optimization algorithm is supposed to
do.
The code will need further refactoring as line 14, 15 and 16 require knowledge
about the original function. Line 14 shows the Rosenbrock function, which
we will model separately in the Analysis placeholders of the Experiment
loop patterns. Line 15 and 16 use the Rosenbrock’s derivative function. As
explained in Section 4.5.1, we are unable to use the derivative function and
should replace it with the finite difference approximation method.

5.4.1 Experiment loop pattern 1 placeholder

This pattern needs 2 internal placeholders. One for the initialization of the
algorithm resulting in the execution of a first set of values and one placeholder

5.4. OPTIMIZATION LOOP PATTERN 65

for the internal analayis. As analysis we will choose the Rosenbrock function
as introduced in Section 5.2.2. We will use two Input variables and one
Output. For the experiment generator placeholder we will write an external
web service that allows us to initialize the optimization algorithm and as
a result gives a first set of values to be executed by the experiment loop
pattern. The code listing 5.8 shows how we wrote the init web service:

Listing 5.8: Init web service implementation
1 static lbfgs.lbfgsstate state;
2 static double [] s = new double [0];
3 static int n = 0;
4 static int m = 0;
5

6 [WebMethod]
7 public double [][] init(int [] startValues)
8 {
9 state = new lbfgs.lbfgsstate ();
10 isConverged = false;
11 n = startValues.Length;
12 m = n;
13 s = new double[n];
14 for (int i = 0; i < startValues.Length; i++)
15 {
16 s[i] = startValues[i];
17 }
18 lbfgs.minlbfgs(n, m, ref s, 0.0, 0.0, 0.0, 0, 0,

ref state);
19

20 double [][] firstValues = new double[startValues.
Length][];

21 for (int i = 0; i < startValues.Length; i++)
22 {
23 firstValues[i] = new double [1];
24 firstValues[i][0] = startValues[i];
25 }
26 return firstValues;
27 }

We do exactly the same as in code list 5.7, that is, we just initialize the
algorithm. It differs in that we now should return a first set of values back
to the pattern. In this case we just return the transposed of the startValues
parameter.

66 CHAPTER 5. PROOF OF CONCEPT IMPLEMENTATIONS

5.4.2 Experiment loop pattern 2 placeholder

We should now provide an implementation for the second experiment place-
holder. This placeholder is responsible for executing the actual core of the
algorithm. We have the added complexity of changing the code from 5.7 to
use the finite difference method for calculating the gradients. Code listing
5.9 below shows our implementation.

Listing 5.9: Iterate web service implementation
1 static Boolean isConverged;
2

3 [WebMethod]
4 /*
5 * Input are the computed function values with length

n + 1
6 * Output are the new set of input values to be

computed with dimension (n, n + 1)
7 */
8 public double [][] iterate(double [] functionValues)
9 {
10 state.f = functionValues [0];
11 for (int i = 1; i < n + 1; i++)
12 {
13 state.g[i - 1] = functionValues[i];
14 }
15

16 if (!lbfgs.minlbfgsiteration(ref state))
17 {
18 isConverged = true;
19 double [][] result = new double[n][];
20 for (int i = 0; i < result.Length; i++)
21 {
22 result[i] = new double [1];
23 result[i][0] = state.x[i];
24 }
25 return result;
26 }
27

28 double [][] newValues = new double[n][];
29 for (int i = 0; i < newValues.Length; i++)
30 {
31 newValues[i] = new double[n + 1];
32 newValues[i][0] = state.x[i];

5.4. OPTIMIZATION LOOP PATTERN 67

33 for (int j = 1; j < newValues[i]. Length; j++)
34 {
35 if(i == j - 1)
36 newValues[i][j] = state.x[i] + ((Math

.Abs(state.x[i]) + 0.001) * 0.001)
;

37 else
38 newValues[i][j] = state.x[i];
39 }
40 }
41 return newValues;
42 }

First of all note from the input parameter that this method expects function
values. Indeed every time we invoke this service we should pass the previ-
ously calculated results. The first time this service is invoked these results
will come from the summary of the initialization experiment loop. Line 10 -
14 fill in these values into the function and gradient state of the algorithm.
Line 16 then performs the actual core of the algorithm. In this case it will
decide based upon the information passed into state.f and state.g, the next
set of input values. These values will be placed into state.x by the algorithm.
Note on line 18 that if the minlbfgsiteration function returns false, that the
algorithm has converged. If this happens, we will update our isConverged
boolean variable accordingly. On line 28 - 40, we fill into the first column
of the newValues matrix, the new state.x values and add to the remain-
ing columns the new gradient values calculated through the finite difference
method. The newValues matrix gets returned to the pattern and the experi-
ment loop will enumerate over these new values in order to calculate the next
set of function values.

5.4.3 IsConverged placeholder

This placeholder is responsible for informing our optimization pattern with
the information of convergence. Recall from code listing 5.9 line 18 that we
use the isConverged Boolean variable to hold this information. We can now
write our web service through the following piece of code:

68 CHAPTER 5. PROOF OF CONCEPT IMPLEMENTATIONS

Listing 5.10: IsConverged web service implementation
1 [WebMethod]
2 public Boolean hasConverged ()
3 {
4 return isConverged;
5 }

The generated WSDL code for the different placeholders is attached in Ap-
pendix C.3. All placeholders are present in the same WSDL file as separate
service operations.

5.4.4 Execution

Now that we have provided implementations for all placeholders, we can ex-
ecute the pattern using ActiveVOS. Figure 5.6 shows the starting execution
point. We pass 100 as maximum number of iterations and press the "go"
button. Browsing trough the ActiveVOS monitor, we can watch the results

Figure 5.6: Optimization loop pattern execution

of the exucution as seen in figure 5.7. On the left hand side we have an
overview of all variables and their final value at the end of the optimization.
The iterationCounter shows a value of 42. This means that 42 iterations have

5.4. OPTIMIZATION LOOP PATTERN 69

Figure 5.7: ActiveVOS monitoring BPEL process

occurred before the optimal value has been found. This optimal value is seen
by clicking the Output1 variable. It shows an optimal value of 7.51435. This
means the optimization algorithm got stuck in a local optimum since the
global optimal value for the Rosenbrock function is 0. As we know from the
property of local optimizations this behavior is expected (see Section 3.3.1).
The corresponding input values for this optimal value are seen in the Input1
and Input2 variables. They show us a value of 3.72340 and 13.89494 respec-
tively. All this information can also be found in the summary variable, giving
us a list of all executed experiments with corresponding input and output
values.

Chapter 6

Future Work

We have proposed several patterns that allow to model the different itera-
tions in the domain of CAE/MDO. We claim that a fast implementation of
an iteration is possible thanks to the use of placeholders within a single pat-
tern. However, the patterns sould still be designed in a way that one pattern
covers as many iterations as possible. This balance between coverage and
ease of implementation should be evaluated on each individual iteration. For
example, we could fine-tune the optimization loop pattern in the context of
multi-objective optimization algorithms as presented in Section 3.3.2. At the
moment the optimization loop pattern proposes only one placeholder that
checks for convergence. Due to this single placeholder, implementing a con-
vergence check for multi-objective is more difficult. We can ease this work
by providing in the optimization loop pattern separate convergence place-
holders, one for each objective. We move the complexity from the internal
algorithm to the pattern structure itself.

Second fine-tuning can happen on the level of data usage within the dif-
ferent patterns. We presented schemas for representing Input variables and
Output variables. At the moment these schemas are somewhat limited. The
reason is that these schemas are of secondary importance compared to the
patterns itself. Still, it might be good to formalize these schemas in more
detail. For example, data elements that should be added are those that are
used within Robustness and Reliability iterations. These iterations require
inputs to have information about their distribution behavior. This includes
information about the sigma value, type of distribution (normal, lognormal,
weibull, etc.) and information about the distribution’s low and high bound.

71

72 CHAPTER 6. FUTURE WORK

Another possible extension to the system, is to allow patterns to be con-
nected to each other. This way we can model a series of iterations. On top
of that we could provide the option for the next iteration to start from the
optimal set of values from the previous iteration. It will allow us to mimic
the scenario described in Section 3.3.3, where we performed three consecu-
tive optimizations with the final SQP optimization starting from the optimal
value of the previous SAE optimization.

Yet another addition could be to allow Response Surface Models [MMAC08]
to be incorporated in place of analysis placeholders. RSM’s provide an ap-
proximation for the internal analysis. We could for each Output variable
provide the option to be evaluated either by the internal analysis or by the
internal RSM.

In Section 2.4 we have explained, for the first two requirements, the solutions
offered by the conceptual workflow language. It would be benefical to show
how these constructs can be used in our solution. We recall the reader that
data ports were presented to model the advanced data usage within MDO
applications. These data ports can be used in our solution to model the
different data elements present in the proposed patterns. The sub-workflow
construct was presented as a solution for modularizing croscutting concerns.
Looking at the design for the optimization loop pattern as presented in Sec-
tion 4.5, we can see that the analysis patterns present in the two experiment
loop patterns are identical. We say that the analysis workflow is scattered
accross the design. Future work can remedy this croscutting concern using
the proposed sub-workflow construct.

A final continuation consists in providing more concrete example implemen-
tations as those presented in Chapter 5. This will convince users in the
MDO domain that implementing their iterations is quick and easy. For ex-
ample, in the context of Design Space Exploration, we have implemented a
Random DOE. It would be helpful to provide an implementation for orthog-
onal DOE’s as well. In the context of optimization, we have implemented a
local-optimization algorithm. We could add an implementation for a global
optimization method, such as an evolutionary algorithm.

We have stated several times that this thesis completes the conceptual frame-
work. This means that all requirements defined in the requirements analysis
are met and that in a next step we can start on an actual first language
implementation. This implementation will happen in YAWL [Kne04] due to
its formal approach and support by a large and active academic and research

73

group. But before this implementation can start, we have to translate our
proposed patterns from BPEL into YAWL. This translation can happen as
soon as the language extension newYAWL [Min07] is ready. newYAWL will
include all the iteration constructs that are required by our patterns.

Chapter 7

Conclusion

Workflow languages can be used to model business processess. In theory they
can in fact be used to model almost any process, yet in practice, we see that
this statement does not hold. Some processess like engineering processess
are not being modelled using existing workflow languagues. The reason is
that the complexity of these processess pushes today’s workflow languages
to their limit. Recent research has studied this complexity. The outcome
of this study was the definition of a set of problems and requirements that
need to be met. The first problem acknowledges the use of many different
concerns that get scattered accross the design. A second problem states the
intensive data usage inside the process and a third problem recognizes the use
of advanced iteration constructs. The first two problems have been solved
by introducing a conceptual language built upon YAWL that leverages the
language with sub-workflows and data ports.
This thesis provides a solution to the third and final problem. For that we
took two steps: we studied the use of iterations within MDO applications and
proposed a set of workflow patterns that would allow these iterations to be
modelled. The iterations have been studied in Chapter 3. There, we present a
classification of commonly used iterations within MDO applications. This is a
classification as seen from the eyes of a structural engineer. The classification
has three parts: Design Space Exploration (DOE) iterations, Optimization
iterations and Robustness and Reliability iterations. We have taken both a
theoretical and practical approach to fully understand these iterations.
In a next step in Chapter 4 we have proposed a set of workflow patterns.
These patterns allow us to model the previously classified iterations. We
reclassify the iterations through the eyes of a software engineer by mapping
the iterations onto these patterns. A first pattern, which we labeled the
Analysis Pattern, allows us to model the design behind the iteration. This

75

76 CHAPTER 7. CONCLUSION

design can range from a simple formula to calculate the square of a number
to a complex engineering study such as the accoustics within a car’s engine.
A second pattern, called the experiment loop pattern allows us to model
iterations that are deterministic in their input generation. These are all
DOE’s and Monte-Carlo methods. A final pattern, the optimization loop
pattern, allows us to model all optimization iterations. We showed that some
of these optimizations will need adaptation to fit into this pattern. Local
optimizations will have to change their gradient calculation from analytical
to a finite difference method.
To prove our concept, we have selected in Chapter 5 for each pattern an
iteration that we implemented into our pattern. We do this by implementing
the required placeholders and adhering to the necessary data contracts. We
turned our abstract patterns into concrete ones. These implementations were
achieved using ActiveVOS and BPEL.
All this is still seen on a conceptual level. A next phase in the project
will be the actual implementation of the language. If this is finished, MDO
applications can finally be implemented using a real workflow language. They
will gain all benefits such as evolution and reuse, customization, collaboration
and distributive computation. They can then focus on what really matters:
implementing new design iterations.

Appendix A

Optimus FEM Simulation

The input file has the following structure:

Nodes:
node Node_number pos_x pos_y
Materials:
material Material_number Density Cross-Section-Area Young modulus
Elements:
beam Beam_number Node_1 Node_2 Material
Single Point Constraint in X-Direction:
fixx Node_number
Single Point Constraint in Y-Direction:
fixy Node_number
Force in Y-Direction:
forcey Node_number Force_intensity
Number of eigenmodes:
nummodes Number
Viewing Parameter:
zoomfactor Number
END:
end

The structure of the output file is the following:

77

78 APPENDIX A. OPTIMUS FEM SIMULATION

Mass = Mass
Node node_number: dx = dx dy = dy
Beam Beam_number: Sigma = Stress
Node Node_number: FX = Reaction_force_x-direction
Node Node_number: FY = Reaction_force_y-direction

Figure A.1 shows two possible instances of these files.

Figure A.1: Example input and output files.

Appendix B

Simulation examples

B.1 Design of experiments

Section1 Section2 Section3 Mass Max_Stress Max_Displacement
1 0.0047218907066115 0.0056119106196532 0.0034174799136123 4320.3119155238 8.5359657517615E7 0.014001426757173
2 0.0059849333387222 0.0044969845146242 0.0040115537122023 4899.121686197 1.0299282409241E8 0.013121691371846
3 0.0064794552307534 0.006036606510732 0.0063163623979763 7153.8849580283 7.6727651484336E7 0.0094466142480439
4 0.0022493714620442 0.0055930840585638 0.0045732976225632 4953.3987317306 1.6023291639147E8 0.015343259719144
5 0.0038852465522437 0.0064902915628671 0.0031260068118855 4041.6312290111 9.3325446219086E7 0.014866596139737
6 0.0030801361045184 0.0061086295904007 0.0059807815367093 6361.074775813 1.1698440807267E8 0.012014887984129
7 0.0048145792834586 0.0049456649646725 0.0049422835554309 5584.7253406181 9.3655870376752E7 0.012030217072772
8 0.0061380824672177 0.0060906705943375 0.0037090935795524 4840.7000581878 7.8643212242575E7 0.01247546702815
9 0.0021163276025156 0.0057180589156585 0.0032263125385546 3775.9012582127 1.7036588278555E8 0.018007422827372
10 0.0025746114003749 0.0046746839548519 0.0039154483489795 4325.0517219244 1.400099107393E8 0.01614231726009
11 0.0017669776352603 0.0036832424068277 0.0046949285278451 4769.1380226901 2.0399925551146E8 0.018692351547884
12 0.0050258157993193 0.0042795224606491 0.0022457002003207 3194.4538928173 1.2992694655104E8 0.018957114672166
13 0.0055779006222561 0.0050592712900769 0.0045250484951255 5349.0189464685 9.1549006589743E7 0.012053772986716
14 0.0036132819017608 0.0043746913885836 0.0028060860762702 3481.2825098222 1.0587903482523E8 0.01752617274649
15 0.0029826733888969 0.0052117126628223 0.0018339977679059 2636.630312019 1.591321158347E8 0.022575537409901
16 0.0060781274835677 0.0055260548850713 0.0042907255215172 5273.3207877324 8.3814066749565E7 0.011854148442909
17 0.0035367653515581 0.0054904574083658 0.0042255656088145 4831.9795237959 1.0190613287261E8 0.013571533957893
18 0.0053109790318767 0.0063246040246367 0.0051364661938986 5985.2762350957 7.3235213656466E7 0.010716792234872
19 0.0020234337146872 0.0058354668103638 0.0038723474227748 4337.4071501424 1.7815452933688E8 0.016933004765492
20 0.0037052951860403 0.0056654879905689 0.0039580430333457 4644.4473703072 9.7275837436488E7 0.013704412001471
21 0.0041778606060628 0.0016617241112234 0.0061620817424682 6175.9914733325 2.7874881962981E8 0.019133118742398
22 0.0059430203353557 0.0019595889163825 0.0031860055706629 3885.2394429359 2.3634159276745E8 0.020469959223428
23 0.0030219294549395 0.0041020950356454 0.001591414117475 2304.91027754 1.8341075001254E8 0.025718357813984
24 0.0027028745935002 0.0015503932025442 0.0048406001937743 4792.759425862 2.988013789359E8 0.022876418171785
25 0.0040068561225869 0.0024720872658862 0.0059308505177416 6041.6472463234 1.873777037061E8 0.015610287588243
26 0.0034227859352733 0.0024097145333198 0.0062436560558137 6219.1920517013 1.9223772590743E8 0.016164695029371
27 0.0020748435610229 0.001806034021724 0.0016888435653341 1985.951691898 2.5648860267077E8 0.032776320677081
28 0.0062995003153475 0.0021039350184807 0.0025420856778594 3394.903178877 2.2011570141025E8 0.021784289742673
29 0.0057473209460824 0.0021513828876711 0.0053054667353414 5721.6597798572 2.1528831963037E8 0.016315244852499
30 0.0032781339520276 0.0032059660797537 0.0053725106457323 5530.4831937039 1.4449368071982E8 0.015043387959539
31 0.0016308996865883 0.0036019207007258 0.0021485878622929 2524.2615444898 2.2123390055637E8 0.025957488985896
32 0.0042402076677299 0.0035541132554069 0.0060479690421645 6301.8959491283 1.3033117082057E8 0.012963486215653
33 0.0051860454591618 0.0044205753604457 0.0051671518052138 5776.0927504008 1.0477915294715E8 0.01206162011664
34 0.0043081543772111 0.0028447217054666 0.0046190833802952 4988.08259389 1.6282609129288E8 0.015617159389297
35 0.0017317857165474 0.0059446521510097 0.0044061667799694 4770.5864290422 2.0814161273372E8 0.017309055635101
36 0.0026764245102118 0.005145969955651 0.0032567175075113 3820.9815229658 1.3470679621738E8 0.016902033218694
37 0.0053943047038206 0.0023098794721255 0.0047080333530302 5167.1248732323 2.005164188684E8 0.016477003834761

79

80 APPENDIX B. SIMULATION EXAMPLES

38 0.0044078005150419 0.0025952305596317 0.0024367970918726 3076.0409943029 1.7845952738507E8 0.02134544767184
39 0.0016850584997563 0.0026767000425532 0.0054918463939037 5335.3551269796 2.1391052336487E8 0.020206813815814
40 0.002429368128459 0.0058583960374217 0.0037546275054965 4298.4031695272 1.483838919164E8 0.015937319900304
41 0.0040649670771769 0.0031711909613404 0.0026200605878442 3249.8233265628 1.4605331777108E8 0.019470157051435
42 0.0060341555563754 0.0042075983074981 0.0062600040921194 6829.5551084516 1.1008129687127E8 0.011028906952632
43 0.0029384078395462 0.0043460448444311 0.0021665587340622 2820.5809093797 1.3468975477874E8 0.02117836767283
44 0.0039657579452768 0.0041530137267637 0.001715622948481 2560.1227754013 1.7011118785102E8 0.023430681713114
45 0.0018829626896546 0.0034781205414882 0.0043496814899763 4462.7601150423 1.9144425628301E8 0.018913702916654
46 0.0056365692139058 0.0027699175119015 0.0055065124113283 5950.5244165698 1.6721600587714E8 0.014155958435607
47 0.0055058583959135 0.0015108147729671 0.0033615098400515 3921.2662229435 3.0654867015369E8 0.023164514859424
48 0.0045669288001632 0.0047488112545206 0.0041480385722212 4834.2208331773 9.7537393973295E7 0.0133641645176
49 0.0032462237956787 0.0027050993191432 0.0052180560486513 5334.2069301875 1.7124699738506E8 0.016336769690382
50 0.002616496950008 0.0032873717565758 0.0064125181302171 6345.4493675089 1.4093017418216E8 0.015192806288878
51 0.0042754823319544 0.0061676281935755 0.0056447979092158 6254.5257458333 8.4276789741245E7 0.010960035674486
52 0.0033600411174342 0.0033364869492123 0.0060583271180995 6154.2714333356 1.388417020476E8 0.014156562911435
53 0.0024736961342579 0.0045121257958174 0.0052841045363009 5482.0778761927 1.4568774758576E8 0.014810396643308
54 0.0037677347489002 0.0019040673836583 0.0020117577427686 2531.5838953405 2.4323611977097E8 0.026870961820497
55 0.0046095243106249 0.004038193159097 0.002741841657496 3536.2093555376 1.1469340964492E8 0.017324731545312
56 0.0052831041880677 0.0025165726573348 0.0034908367711409 4115.1304393578 1.8404151307538E8 0.017803662798895
57 0.0028282013904271 0.003095719126023 0.0057977102913685 5820.4347470369 1.4964865893688E8 0.015574403927151
58 0.0036957894505407 0.0029389603118389 0.0057090796892423 5855.3798720486 1.5761545106717E8 0.014827189419392
59 0.0063462010817624 0.003444017488196 0.0043910113362301 5163.2404229975 1.3448108024783E8 0.013748580103849
60 0.0031009589738253 0.0054306345796333 0.0061493646038044 6433.5238084819 1.1619842444791E8 0.01225004400748
61 0.0064130201990306 0.0029903991410673 0.0029289380845385 3849.5590812652 1.5487064660026E8 0.017610995324151
62 0.0031865634530415 0.0048902839224156 0.0029792587788578 3626.8381972427 1.1315080190578E8 0.017017611293206
63 0.0019651839091251 0.0016083870247552 0.0044792270786039 4374.5162709948 2.8807058190988E8 0.024762966537175
64 0.0048737405070644 0.0046025075785123 0.0023706984970343 3317.2618667563 1.2307271509919E8 0.01809471282868
65 0.0039191813003786 0.0053508062276675 0.004196123505194 4847.7083296503 9.1962155558476E7 0.01332618495266
66 0.0043503494315044 0.0062213650262157 0.0027822900100442 3781.5910532244 1.0485859000612E8 0.015667922491977
67 0.0051084132386397 0.0030119944887914 0.0064922636528451 6756.6055558274 1.5378244362215E8 0.013103736584328
68 0.0019312215590821 0.0062584524910565 0.0049704410723731 5327.1429682856 1.8662215323643E8 0.015625520817147
69 0.0038441110135217 0.0047985851139083 0.0019474738161959 2817.2388691697 1.498447648642E8 0.021065720086236
70 0.0058815931921968 0.0053434372830439 0.00380242937067 4798.2593317653 8.6677628813593E7 0.012839234205753
71 0.0034745973176991 0.0026178188968647 0.0017715557911084 2360.1255540452 1.7691753765624E8 0.026155430972669
72 0.0044989244869512 0.0049502119272653 0.0024542227752009 3373.4507429144 1.1888316620067E8 0.017639762623187
73 0.0056639497578895 0.0035329738529206 0.003002640526406 3863.3814108509 1.3109057841928E8 0.016649576325539
74 0.0052480397099984 0.0038151052151566 0.0054165098894542 5933.250889091 1.2140791012591E8 0.012490254086551
75 0.0057598322068587 0.0020187944108707 0.0016190688089606 2501.3810584163 2.2937534414133E8 0.028333624396987
76 0.001585103996753 0.0039315866471783 0.0036021468524975 3819.5465596537 2.2746561989347E8 0.020960857343266
77 0.0063803168184582 0.0052611569475544 0.0050492289123747 5948.2329260755 8.8034883890487E7 0.011001105870041
78 0.0049430588621981 0.0039913384653541 0.0058674440909196 6299.9737419894 1.1604978409271E8 0.012049569152335
79 0.0046512282952643 0.0017303524341281 0.00555757624606 5728.8131962711 2.676838265495E8 0.018820773934202
80 0.005071308182997 0.004587801346714 0.0048546872720524 5506.1505025243 1.0095982920172E8 0.012289383190757
81 0.0047653450540666 0.0031267600178735 0.0025849565238947 3319.1050135692 1.4812221995161E8 0.019224797699585
82 0.0035912647011311 0.0020984277767624 0.0047770029079234 4932.9849064001 2.2074466723608E8 0.018465662194744
83 0.0049833728052268 0.0017786128284231 0.003518917009664 4010.5015707586 2.6040227990655E8 0.021104647451107
84 0.0027849080729763 0.0022825462433857 0.0028750335868942 3178.5821496047 2.0294278396509E8 0.022455653204152
85 0.0028755641836179 0.0022291893181471 0.0020861242233197 2499.7511159245 2.0778312166602E8 0.025981021769806
86 0.0041423878799298 0.0059821351433573 0.0015318911061073 2635.3600187131 1.9053212487467E8 0.02370947452245
87 0.0023246898651724 0.0040635365407715 0.0023035925046086 2815.6626166512 1.5517171085866E8 0.021988042975573
88 0.0021959677239598 0.0038721711927167 0.0030763275620073 3446.8094196984 1.6420473773161E8 0.01973185716448
89 0.0062287412913167 0.0037760656517738 0.0033330886762872 4263.1686919882 1.226514399433E8 0.015210812316094
90 0.004549908887966 0.0051595257759045 0.0018735567016685 2899.8020012889 1.5575671462103E8 0.020795008997713
91 0.0022682268093572 0.0050170862197365 0.003572669252024 4020.0159952403 1.5893916146998E8 0.017243290250209
92 0.0015063596435947 0.0033616053872853 0.0056546795032644 5528.3705638459 2.3927781275419E8 0.019705803358953
93 0.0025375531604103 0.0064178879518725 0.0058407998223816 6193.3118861843 1.4200461114308E8 0.012975797947281
94 0.0061756651434865 0.0057866652753633 0.0022830942858015 3571.0877649544 1.2779422120359E8 0.017101551118431
95 0.0054777009428764 0.0018768833338182 0.0019862905498902 2762.412372568 2.4673501085495E8 0.026139007793168
96 0.0054388971328139 0.0037457424460049 0.0026771333640648 3570.7662084516 1.2364278980356E8 0.017506096839084
97 0.0058483361157678 0.0063918123827382 0.004088372348965 5161.6136141429 7.2461841238834E7 0.011769595325468
98 0.0018067440586349 0.0048337692830599 0.0050718284341139 5234.2086415865 1.9948703715752E8 0.01691701073534
99 0.0023885448572369 0.0023511658943353 0.0036912440772305 3837.1222851703 1.9704127059776E8 0.021000169689927
100 0.003323270539027 0.0028913635946165 0.0063617458065463 6361.9580316259 1.6021701763102E8 0.01487911592233

B.2. OPTIMIZATION SIMULATION 81

B.2 Optimization simulation

B.2.1 Sequential quadratic programming (SQP)

Label Iter Annot Section1 Section2 Section3 Cost
1 1 1 START 0.0040 0.0040 0.0040 13666.574134256
5 2 1 LINE 0.00387072146742 0.0044832121285052 0.0032479835625211 11948.399173603
9 3 2 LINE 0.0034828290809253 0.0055789402658978 0.0015 13216.895507244
10 4 2 LINE 0.003724768718338 0.004895503112982 0.0025902676207219 11324.730590714
14 5 3 LINE 0.0036107111385933 0.0048179474514431 0.0026661189047619 11259.3950441
18 6 4 LINE 0.002895430736823 0.0043357787747296 0.0029318779152402 12054.414833699
19 7 4 LINE 0.0035016486491951 0.0047444287082172 0.0027066405508059 11207.206626214
23 8 5 LINE 0.0024736878901246 0.0039527568635369 0.0029324563302138 12787.935907847
24 9 5 LINE 0.0033869027918103 0.0046560585405978 0.0027318471795518 11153.369554532
28 10 6 LINE 0.0024235937612601 0.0037446325609636 0.0028335494446179 12699.222831566
29 11 6 LINE 0.0032779149603133 0.0045529407061957 0.0027433536732899 11260.412415529
30 12 6 LINE 0.0033686519779217 0.0046387907008911 0.0027337740265478 11158.458713512
31 13 6 LINE 0.0033810673967736 0.0046505374352524 0.0027324632569205 11150.482281386
35 14 7 LINE 0.0022873705629476 0.0033724712519303 0.0027288976662012 12798.851862866
36 15 7 LINE 0.0032487966002003 0.0044959691610168 0.0027320320373081 11264.701716375
37 16 7 LINE 0.0033557596163418 0.0046209634094854 0.0027323807503389 11166.779886623
38 17 7 LINE 0.0033753236637441 0.0046438254555482 0.0027324445316206 11149.937436912
42 18 8 LINE 0.003362602158797 0.004149122215161 0.0027271607928734 11242.305298573
43 19 8 LINE 0.0033718448495253 0.0045085442389079 0.0027309996439631 11122.290136437
47 20 9 LINE 0.0033582908996306 0.0015 0.0027127726465834 19320.983052436
48 21 9 LINE 0.0033704894545358 0.0042076898150171 0.0027291769442252 11192.104701143
49 22 9 LINE 0.0033715138367844 0.0044350699762428 0.0027305545066852 11106.101120354
53 23 10 LINE 0.0033529383351427 0.0015 0.0027102591286759 19315.340068961
54 24 10 LINE 0.0033696562866202 0.0041415629786185 0.0027285249688843 11253.877796993
55 25 10 LINE 0.0033712297609061 0.0043901838354915 0.0027302441286699 11096.239351341

B.2.2 Self adaptive evolution (SAE)

Iter Section1 Section2 Section3 Cost
1 0 0.0040 0.0040 0.0040 13666.574134256
2 0 0.0039664924353431 0.0063140169564975 0.0026851059253275 11679.671853676
3 0 0.0056843640632616 0.0022500448610927 0.0015280680481352 13661.603393911
4 0 0.0050310635903649 0.004892878697433 0.0058658015886722 16288.846317556
5 0 0.0016537582746979 0.0018091547535771 0.0030542663858666 17149.1676313
6 0 0.0033801403626681 0.0027155305346561 0.0021924458945203 12651.778552606
7 0 0.0041485630285097 0.0035337583098793 0.0063362195815706 18121.865689216
8 0 0.0020633086660976 0.0051508250822307 0.0055315871570949 18474.746044557
9 0 0.0063353859383511 0.0037917959228606 0.0038740757486391 14354.850664281
10 0 0.0029216416049595 0.0059444452220342 0.0040427178810609 14183.790936008
11 0 0.0053218005468108 0.0055347035332242 0.0044178908815303 13645.620814869
12 0 0.0032006845468719 0.0031863747622126 0.0049341911119402 16102.578657267
13 0 0.0043587620685088 0.0041022147622555 0.0024029093326177 11411.633289197
14 0 0.0058718738725421 0.0020988539927728 0.0052880815064297 20518.993460141
15 0 0.0023911944035955 0.0045791397720983 0.0033891445117202 13870.546632921
16 1 0.003771717888378 0.0052824138514702 0.0049201902566185 14500.23353387
17 1 0.003672090355315 0.0041228883075974 0.0019251891128596 11763.19360205
18 1 0.0042978222764961 0.0032961909804075 0.0018377343653962 11935.746954485
19 1 0.0046586588303646 0.0052011675817011 0.0028956270687829 11633.95435035
20 1 0.0046678412326043 0.0059107551538981 0.0031986083798149 11867.586371176
21 1 0.0054012317603343 0.0056544581650032 0.0050895344380193 14720.318245008
22 1 0.0048006787394163 0.0026108035816132 0.0049192273126007 17816.037078731
23 1 0.0037211856687802 0.0045458720844512 0.0016525921627509 12521.173480905
24 1 0.003374401929728 0.0051943974212098 0.0055336057705361 15872.087218181
25 1 0.0053375663841068 0.0060528213095073 0.0034845008058722 12228.389957754
26 1 0.0045203127072901 0.005213515107142 0.0018454952469079 12395.339786614
27 1 0.0042579971398675 0.0043607603662939 0.0016126493213172 12759.987647563
28 1 0.0041016568987404 0.00542647665325 0.0050028909920106 14422.378383505
29 1 0.0055374498221968 0.0055452824462244 0.0040632916899077 13118.80412783

82 APPENDIX B. SIMULATION EXAMPLES

30 1 0.004999752329906 0.0052636357078763 0.0057868634481827 15936.723451741
31 2 0.004907740295055 0.0059251612481802 0.0046251106780183 13710.744675728
32 2 0.0043262394851845 0.0055683619064738 0.0055778566674418 15260.912560744
33 2 0.0056068935490152 0.003821966982442 0.0030769191315083 12801.958529058
34 2 0.0037387341343106 0.0053554649251665 0.0028385168924143 11402.340149015
35 2 0.0029915777998103 0.0064884778345294 0.0038714343243077 13912.474199447
36 2 0.005563931864618 0.005257537508099 0.0035071549157101 12350.904437895
37 2 0.005605865947078 0.0024923505722276 0.0048593470659194 18290.649228642
38 2 0.0052122726837231 0.0056932577097439 0.0036029156409083 12206.165853492
39 2 0.0052301900208149 0.0059720918739961 0.0028438363171466 11957.454608308
40 2 0.0029424948478647 0.0057367577480223 0.0043993283077777 14692.416604735
41 2 0.0030645935815782 0.0050513709102402 0.0057822213801875 16637.301874083
42 2 0.0047126133865032 0.0059573864616655 0.0038947813043803 12442.985620785
43 2 0.00495629319591 0.005686243569199 0.0021252451103359 12164.067897475
44 2 0.004115778734538 0.0041951569678438 0.0028604005089024 11630.334450161
45 2 0.0056917814851245 0.0055446985498355 0.0044683285319546 13828.745076802
46 3 0.0027662037537441 0.00469126510229 0.0018117258699759 11861.236681537
47 3 0.0047358306217777 0.0057666459749183 0.0035534045623424 12038.279757016
48 3 0.0046189083387814 0.0027867424432718 0.005284894674557 17911.060184022
49 3 0.0033686268518189 0.0051913933294944 0.0020863949120178 11657.115210922
50 3 0.0052180660897842 0.0064799273466893 0.0025151272297924 12113.28113566
51 3 0.0055640237148969 0.0064369715252051 0.0029675866482428 12167.278777322
52 3 0.0039709355282057 0.0049724820957044 0.0040068658672039 12882.815858851
53 3 0.0056994436779791 0.0053165707936 0.0029581296453037 11962.357206687
54 3 0.0032158355576543 0.0055037117022635 0.0020478418375369 11733.806894373
55 3 0.0054472963043862 0.0058645645081317 0.0029345838456525 12005.26221805
56 3 0.0045894541790451 0.0051070177289532 0.0020472270296522 12037.547190526
57 3 0.0049539305343586 0.0047907702906488 0.0024194307792286 11719.081332179
58 3 0.0062695159867837 0.0036438220350247 0.0042505390110251 15141.624862833
59 3 0.0057449610524508 0.0049715181421046 0.0027373976622831 11888.000888081
60 3 0.0063966353366343 0.0049323508890063 0.0031333167068529 12157.185246849
61 4 0.0041071602135452 0.0049475937320875 0.0038228555263284 12634.006228015
62 4 0.005237597301699 0.0042707894152202 0.0017899836916143 12519.659681518
63 4 0.0050685011610688 0.0058635961588909 0.0029788387256314 11905.629368681
64 4 0.003678516265535 0.0054829087344252 0.0020925709307152 11799.540088658
65 4 0.003866199790326 0.0062932370779717 0.0039126526439551 12986.214341116
66 4 0.0057874413099549 0.0046898292199559 0.0021701303564354 12133.172076694
67 4 0.0058160405110631 0.003990236048343 0.002857772241462 12312.155521349
68 4 0.0029266393554126 0.0061254420006783 0.0024779935734565 11645.307294213
69 4 0.0034387736772954 0.0056319155531277 0.0036188190428463 12749.89592526
70 4 0.0054976880625701 0.0050634171483839 0.0022973297626808 12013.11333107
71 4 0.0061358657733624 0.0047448389874579 0.0027822859660462 11947.85540075
72 4 0.0061174223439562 0.0049346362718215 0.0023366885471623 12131.223695242
73 4 0.0050427714252528 0.0052489008645432 0.0032783415413939 11864.445910709
74 4 0.0033754054530013 0.0041195597241087 0.0024524291169519 11110.764190508
75 4 0.0055720395273224 0.0044337968110192 0.0015232527180454 13468.138499852
76 5 0.0031187134054929 0.0057180018641646 0.0022557382074844 11516.139831549
77 5 0.002207362169018 0.0035903066241249 0.0026224510153251 12899.96262131
78 5 0.001922719470275 0.0063702827720188 0.0021655804894091 13733.823527876
79 5 0.0037662924081209 0.0052561948183118 0.0018137721274627 12260.967987289
80 5 0.004100700983578 0.0059023937394352 0.0018724922506293 12369.180808712
81 5 0.0025662611815585 0.0058194866479023 0.0022952375497835 11939.202808824
82 5 0.0028649051881396 0.0032866351259116 0.0031064890380994 12828.719871336
83 5 0.0031857564353685 0.0044357938383955 0.0027811791719703 11411.245288377
84 5 0.0025726162323399 0.005915236391061 0.0021177206274412 11655.303116873
85 5 0.0041756848896289 0.0057117472334123 0.0024491481884563 11681.918401293
86 5 0.0034000944047412 0.0062949076595021 0.0029413056278705 11821.398625209
87 5 0.003017766423384 0.005216667267509 0.0017424359030225 12213.717754534
88 5 0.0019150925601181 0.0045432976610881 0.0036772365009499 15850.761946287
89 5 0.0034211390075545 0.006485053027761 0.0021072870649807 11924.129385373
90 5 0.0032719342293752 0.0064296848485747 0.0023554393769527 11635.725963806
91 6 0.0026940727017477 0.0041893315654535 0.0035851133579427 13448.221602624
92 6 0.0034968331648707 0.0054673841887322 0.003451193705641 12378.89849875
93 6 0.0035788764616282 0.0059975838027854 0.0017632277696839 12487.818350647
94 6 0.0035659537190699 0.0060275969069643 0.002243752834606 11720.021797808
95 6 0.0037080423878972 0.0039915913447942 0.0028960872340782 11777.627188867
96 6 0.0034150434224422 0.0044911044669656 0.0023361389515541 11271.608852197
97 6 0.0035215606416343 0.0056209454815869 0.0027995467131955 11397.063530347
98 6 0.0033344110804942 0.0061426864007195 0.002492278312995 11517.069319775
99 6 0.0039261714146258 0.0061540563941521 0.0030459239712641 11660.435743791
100 6 0.0032252175436459 0.0060364122810158 0.0026411274856413 11476.373974891
101 6 0.0027843686262168 0.0060817949132744 0.0023023290075898 11584.549775803
102 6 0.0029039366668462 0.0062343671490109 0.0023624401932802 11515.150692806
103 6 0.002817876472683 0.0032226690959678 0.0028244353944679 12460.882951437
104 6 0.0030602093777925 0.0040685167724054 0.002539296859634 11103.917523071
105 6 0.0036362779657707 0.0059715828634319 0.0031388910736972 11840.007559605
106 7 0.0033976814665441 0.0048473246489089 0.0025589710531116 11231.04619706
107 7 0.0031918133981101 0.0046885246958597 0.0021347737475642 11438.722260779
108 7 0.0029860089189314 0.0054733412975453 0.0019324330204434 11847.304559481

B.2. OPTIMIZATION SIMULATION 83

109 7 0.004229424828774 0.0057302322591659 0.0022583372893364 11830.536849812
110 7 0.0033988098796171 0.0042632869880174 0.0025664016237476 11103.148125666
111 7 0.0026767540966112 0.0043379632102372 0.0023525064281484 11489.949030821
112 7 0.0030471904519149 0.0057674901365745 0.0026528287199701 11674.717578264
113 7 0.0038871150581652 0.0045934703162787 0.0017963205690496 12192.40176285
114 7 0.0034762620527495 0.0054637958287157 0.0028885246544576 11474.947333914
115 7 0.0032850463701307 0.0045184942722441 0.0027539517479913 11261.902037731
116 7 0.0041352941712436 0.0033189474199511 0.0018836772589839 11799.688274572
117 7 0.0033265275438609 0.0034435418955326 0.002424809457683 11589.189758126
118 7 0.0039555976714654 0.0038213366029631 0.0019196090804632 11788.568010251
119 7 0.0038390219794699 0.0039845179013221 0.0026913682636469 11485.5103725
120 7 0.0030618320608902 0.0054849196355992 0.0022700057554214 11437.479951794
121 8 0.0036877875189627 0.0046344813496373 0.0028753364832499 11235.108642187
122 8 0.0038485606121402 0.0049563338881991 0.0031959794388436 11534.457454355
123 8 0.0035723465126185 0.0042228032809254 0.0024126285992472 11209.672739057
124 8 0.0033896745366401 0.0046534991118694 0.0027050769211212 11156.115103174
125 8 0.0032931473086477 0.0052036708112438 0.0016856146524486 12443.940262883
126 8 0.0031232824481033 0.0047626852042736 0.00302876388687 11970.145057613
127 8 0.0043365453504498 0.0046838401115232 0.0027376649744925 11427.509509586
128 8 0.0035029203073475 0.0039288259377883 0.0022444711515689 11249.117553881
129 8 0.0034541801344036 0.0044789509398806 0.0028234101503441 11178.778644469
130 8 0.0033666488960487 0.0044606169090667 0.0025532346024787 11140.755708494
131 8 0.0037930306348444 0.0045001746346911 0.0031405393389093 11736.269793846
132 8 0.0036521330615963 0.0040672873712361 0.0026055500482747 11205.30985737
133 8 0.0030971183353978 0.0047434348643011 0.0040907451135545 13746.02078994
134 8 0.0035786698960604 0.0051472989619044 0.0027601707892269 11311.816373499
135 8 0.0034327780398854 0.0052735758011392 0.0028324995819748 11387.474166124
136 9 0.0031831497890396 0.0046589779780852 0.0027508081473666 11412.796353688
137 9 0.003356917975043 0.0045572822172959 0.0026064539333174 11143.623575926
138 9 0.003651889197825 0.0042178431462797 0.0027744645974245 11336.636802594
139 9 0.0031871340015508 0.004608663619602 0.0023710555877159 11208.953365791
140 9 0.0035427906249567 0.0045134730574054 0.0023155601785112 11327.583264925
141 9 0.0036002625085745 0.0043758941469728 0.0026824635719787 11158.666417252
142 9 0.0036354909438213 0.0047500505819247 0.0026699965766212 11251.14486667
143 9 0.0033977493718084 0.004504933029382 0.0026583212471354 11133.010930039
144 9 0.0032315668718309 0.0043163778560981 0.0023449165657106 11175.923288452
145 9 0.0034722236250439 0.0044231433107128 0.0025218300775834 11173.543260807
146 9 0.0033206361054144 0.0044990613497667 0.0028273919775404 11336.601538357
147 9 0.0034076251300051 0.0045425680653106 0.0028800783754874 11335.122636762
148 9 0.0031468001709636 0.0044351413677155 0.0026074970124432 11176.618024182
149 9 0.0034819223309327 0.0045229326984321 0.0025365780584127 11192.430795035
150 9 0.0032325706269579 0.0046408305270407 0.0023427907149703 11247.625226323
151 10 0.0033428831746567 0.0045432506621269 0.0023705233249849 11239.221534051
152 10 0.0033402558277267 0.0045711097767995 0.0025824421268853 11148.235612782
153 10 0.0035261586377626 0.0044232824203384 0.0024765263701075 11207.515058348
154 10 0.0034478337129223 0.0044613318048978 0.0028294011865494 11191.480925509
155 10 0.0033821780505777 0.0043883284994198 0.0026529653671286 11104.420287439
156 10 0.0033824141270673 0.0046199192896401 0.0026551151679711 11154.025575159
157 10 0.0033731653669067 0.0044840220559851 0.0028830579961491 11365.22164441
158 10 0.0034520104249276 0.0044934979953601 0.0027182057328354 11137.902422767
159 10 0.0038218794575507 0.0043777175048011 0.0026142055924002 11234.526151545
160 10 0.0034976483226711 0.0044824644825695 0.0027867498405931 11144.906554729
161 10 0.0033438770673761 0.0044013004459719 0.0026279884077143 11101.336286032
162 10 0.0033534751300385 0.0046595972744943 0.0026650422947477 11152.698755376
163 10 0.0033636579105236 0.0045324498350398 0.0026253071147645 11135.784263259
164 10 0.0034700573531658 0.004496519122364 0.0025882020493479 11167.257485266
165 10 0.0032021364167727 0.0046912413498143 0.0025085678287873 11160.101766971
166 11 0.003323547035537 0.0044938431583922 0.0026441635796253 11112.23350495
167 11 0.0034357658558887 0.0046251510691761 0.0026963262849751 11164.058788138
168 11 0.0032151126375486 0.004519203656398 0.0025065639947672 11127.482844402
169 11 0.0034061769123547 0.0043700925340397 0.0026361377548075 11110.512968148
170 11 0.0035136720363075 0.0043639478972076 0.0025597680283084 11159.388261442
171 11 0.0033483803113432 0.0043912061782741 0.0027007398004034 11088.390897881
172 11 0.0032831249377763 0.0045423550609833 0.0025985478997384 11121.537060523
173 11 0.0033008345435486 0.0043909177236743 0.0026730128601517 11082.899266291
174 11 0.0033451748801482 0.0045388194589745 0.0025362519579188 11157.306892872
175 11 0.0034391359744986 0.0045203707705857 0.0026335281087001 11152.765190649
176 11 0.0032109454813769 0.0043249426615987 0.0025013444926999 11086.539861081
177 11 0.003367966366461 0.0045139583884338 0.0026546573448521 11127.180138086
178 11 0.0033498785218552 0.0042989086617158 0.0026990278329451 11069.119728365
179 11 0.0033753132511236 0.0043717883476572 0.0026299295355297 11103.446621033
180 11 0.0032522942760005 0.0045421535383491 0.0027781618833004 11346.12488289
181 12 0.0033079912346169 0.0044818156436503 0.002631145424891 11107.873071834
182 12 0.0031937997975509 0.0044841525400001 0.0023497998652845 11198.058737671
183 12 0.0031051531121043 0.004261155386412 0.0026461464707677 11258.442839766
184 12 0.003229878514958 0.0043051528956199 0.0025971100138712 11055.722460147
185 12 0.0030549099285457 0.0042092715537748 0.0028361089085061 11628.961266693
186 12 0.0033260460486894 0.004338398116297 0.0026565235123495 11077.151473105
187 12 0.0029244478239914 0.004212535999965 0.0027116011011017 11620.078999084

84 APPENDIX B. SIMULATION EXAMPLES

188 12 0.0033850399706137 0.0043274439694657 0.0026914668490167 11086.150019459
189 12 0.0031915874490111 0.0043879697447582 0.002850845319405 11507.879642704
190 12 0.0032977933921817 0.0042641517368357 0.0026128433214207 11062.171486892
191 12 0.0030249525502464 0.0044387866231581 0.0022352028529862 11232.442930881
192 12 0.0032950235860127 0.004393974432357 0.0026620895531273 11079.40312368
193 12 0.0031090696624498 0.0042147814898645 0.0023974753549691 11085.712079381
194 12 0.0031910929560029 0.0044238798550818 0.0026156716684758 11130.145957722
195 12 0.0034569610335514 0.0042346688960408 0.0023866266211616 11194.864091419
196 13 0.0033617679144725 0.0042213536593048 0.002692665898888 11116.862707004
197 13 0.0033348937567984 0.0042760945571387 0.0026011140437139 11078.118205897
198 13 0.0033209840509606 0.0043231503688361 0.0025489620542464 11099.619347111
199 13 0.0033323453008517 0.0043200393040242 0.0027382004226387 11138.115587586
200 13 0.003367776312584 0.0043607020372246 0.0025406243396917 11123.772971106
201 13 0.003220714558139 0.0042987582312878 0.0026903079751503 11188.366093784
202 13 0.0033455244747168 0.0043521513205567 0.0025290127075241 11119.760494029
203 13 0.003246023036273 0.0042789263230594 0.0026253987580674 11047.853500139
204 13 0.0032523746372578 0.0043783064221435 0.0025422642304124 11094.376779178
205 13 0.003313618660881 0.0042492879317372 0.0026028815676563 11065.877199463
206 13 0.003305520136363 0.0045075333235825 0.0026355085446899 11111.810294338
207 13 0.0032972579930754 0.0042908073834421 0.0026428398410205 11061.289023279
208 13 0.0034977378054774 0.004392394136189 0.002518809956131 11175.27046931
209 13 0.0033769541004564 0.004310501449591 0.002649202493125 11086.856081316
210 13 0.0032968822797035 0.0042919294017419 0.0026397929801665 11062.024698276
211 14 0.0032854185353884 0.0042462994338711 0.0026285896764061 11051.265335188
212 14 0.0032585586555333 0.0043172162091233 0.002629193802 11058.829485898
213 14 0.0033726929958249 0.0043224834133213 0.0027336059041189 11096.124484648
214 14 0.003339217085324 0.0042791694298679 0.0026571328702179 11068.000546855
215 14 0.0033870274641245 0.0042968519080081 0.0025653011935623 11107.390094401
216 14 0.00333504436055 0.00434776783161 0.0026246140986805 11088.034728689
217 14 0.0033140135487118 0.0043130503216649 0.0025575592028624 11092.667028823
218 14 0.0033001301331744 0.0042995538745102 0.0026201538331246 11068.767393812
219 14 0.0032464241580663 0.004256499860301 0.0025937709029211 11050.788930176
220 14 0.00314758239397 0.0042323723456528 0.0025447947965116 11032.429755643
221 14 0.0032421247101171 0.0042878175883792 0.0025868371367315 11058.198210142
222 14 0.0033127118099159 0.0043297479166941 0.002622371341923 11078.334067015
223 14 0.0033732621616224 0.0042910455431761 0.0026575593227603 11080.112086055
224 14 0.0033282980545905 0.0042752430827912 0.0026093319339647 11074.029095027
225 14 0.00330912274029 0.0042549245625502 0.0026979779593835 11084.899132119
226 15 0.0032121093180925 0.0042570926749249 0.002690141893182 11189.884393978
227 15 0.0032822006885734 0.0043159733859145 0.0024678970955024 11119.357546444
228 15 0.0032614330856469 0.0043695542462037 0.0026919591879831 11156.333020044
229 15 0.0030803657629662 0.0041941936673267 0.0025906410498952 11187.023676625
230 15 0.0031151217122381 0.0042751734228305 0.0026732354561113 11292.396412505
231 15 0.0031525789986776 0.0041476430061858 0.0026361448838877 11154.114996965
232 15 0.0031886278156707 0.0042165678698651 0.0024641673749563 11073.222426438
233 15 0.0030956014864987 0.0042252525939329 0.0025693539147405 11137.726763514
234 15 0.00334872824747 0.0042779350017653 0.0026186852119295 11078.181816779
235 15 0.0033086374844268 0.0042285180525287 0.0026582836853857 11048.235145817
236 15 0.0032765168551364 0.0042920059774818 0.0026184586486443 11060.850805876
237 15 0.0032931299060896 0.0042693819663383 0.0025151105631945 11092.322297124
238 15 0.0033238288776489 0.0041383985747733 0.0025049132522529 11076.790341419
239 15 0.0031844046579223 0.0042253300082633 0.0024662048426055 11072.960670605
240 15 0.0031901964839422 0.004312940258233 0.0027025287463014 11249.981849437
241 16 0.0033688188128587 0.0042645100960289 0.002722344761928 11128.109531276
242 16 0.0032683076070618 0.0042008286154012 0.0024867236724926 11082.155586502
243 16 0.0031952296405828 0.0041922900990546 0.0025525927305859 11034.659669054
244 16 0.0033110385891441 0.0042586763268353 0.0026210284683178 11062.841704606
245 16 0.0031331041496339 0.0041564383608824 0.0025402385482717 11024.364346702
246 16 0.0031581790026936 0.0042957319949565 0.0024448951580245 11091.086352336
247 16 0.0032473523017161 0.0042503884838317 0.0025681647686717 11057.009700989
248 16 0.0032701550139865 0.0043104309549035 0.0026661349874997 11090.693284498
249 16 0.0032465476167258 0.0042677924958469 0.0026292155824582 11049.507379312
250 16 0.0032788015869868 0.0043306622575668 0.0026746534727633 11098.685422372
251 16 0.003281573333614 0.0041455156551593 0.0023585752185554 11143.957607627
252 16 0.003348587539809 0.004267177250671 0.0026394788665501 11071.370233168
253 16 0.0033141380607356 0.0043029908889285 0.0026495491735568 11067.412158213
254 16 0.0033032602880339 0.0042346796901332 0.0026743945336528 11057.9620856
255 16 0.0033499978776611 0.0042149679482714 0.0024806624259011 11110.954238332
256 17 0.0033090540371024 0.0043164259870956 0.0026960799242555 11095.109509272
257 17 0.0031713465017704 0.0042734953124991 0.0027046080181607 11269.132141544
258 17 0.0032566523361113 0.0043709303999208 0.0027095226787732 11191.254247323
259 17 0.003152465726939 0.004316018830383 0.0027155372352943 11320.859489983
260 17 0.0030970345097321 0.0041853417652831 0.002519293285426 11045.000172112
261 17 0.003240080955341 0.0041736426161953 0.0027350782171025 11210.951423985
262 17 0.0030683018695546 0.0040318251272595 0.0026300163520084 11233.531575321
263 17 0.0031066651955323 0.0042310383175195 0.0026708715615395 11290.484530014
264 17 0.0029964338059734 0.0041897882606382 0.0027339182491343 11541.821035542
265 17 0.0031540371022963 0.0041967713631625 0.0025954443650369 11095.970719202
266 17 0.0031202289731786 0.0043214405935342 0.0028134801291393 11525.711205694

B.2. OPTIMIZATION SIMULATION 85

267 17 0.0031270279292685 0.0043275641599728 0.0025732365193304 11123.504425389
268 17 0.0031649853838495 0.004089779238955 0.0025153103885194 11017.301951701
269 17 0.0031506431193942 0.0041461468865515 0.0025861507322803 11074.272808735
270 17 0.0030604444705529 0.0042672749839423 0.0025824165760716 11217.162319108
271 18 0.0030259867151635 0.0039862387314248 0.0025894666103045 11217.511703686
272 18 0.0031649525432344 0.0041187179498702 0.0025718040861102 11026.091966347
273 18 0.0030277134975714 0.004072812221605 0.0026495350559722 11332.24841183
274 18 0.0031746874274002 0.004118798893856 0.0025163242808576 11025.909661381
275 18 0.0031944676164299 0.0042182208490375 0.0024062423048339 11105.48452178
276 18 0.0031136078531405 0.0041497125144999 0.0025591373881117 11080.136098387
277 18 0.0030442485627113 0.0041644689675366 0.0025258146735928 11125.127956589
278 18 0.0030788242326927 0.0042063158672836 0.002485579687229 11030.271732805
279 18 0.0031801572042371 0.0040465780930765 0.0026158617078097 11110.08728305
280 18 0.003223470885071 0.0040977202597125 0.0025382917993338 11027.09565951
281 18 0.003052832234196 0.0042505628628539 0.0025991209803031 11251.757327611
282 18 0.0031367131439627 0.0042198344230001 0.0025962865879828 11125.207546386
283 18 0.0030881920661952 0.0040975332377066 0.0025089267082916 11021.247005732
284 18 0.0031148571263681 0.004096095866444 0.0026220261149884 11170.125435477
285 18 0.0031587432576062 0.0041581939567614 0.0026054199430941 11097.872386223
286 19 0.0031459426752966 0.0040829487463077 0.0025571437975498 11019.246344192
287 19 0.0031339642986898 0.0041079554760312 0.0024785470879317 11027.755357624
288 19 0.0031500657585683 0.0040169489946355 0.0025915413285245 11092.351339968
289 19 0.0032212976302651 0.0041148881938702 0.0025652612739095 11021.321343817
290 19 0.0030615384122558 0.0040869473917924 0.002544211283557 11114.077115248
291 19 0.0030861752654709 0.004025301437321 0.0026130480354388 11179.37701017
292 19 0.0031003726304399 0.0041337561492127 0.0026240975354341 11201.33987433
293 19 0.0031004419304945 0.0041343506016232 0.0024372141565288 11043.90707527
294 19 0.003105749149809 0.0041085304191286 0.0025828417535256 11120.848659623
295 19 0.0031269178669442 0.0040856035195222 0.0025206978379285 11003.583890692
296 19 0.0029997695559766 0.0041559604499406 0.0024720968554298 11099.854716592
297 19 0.0031812798029547 0.0041110807715228 0.0025220757603146 11023.924548759
298 19 0.0031077535378065 0.0041026882685795 0.0026316265725189 11196.939803576
299 19 0.0031534609594818 0.0041526945073144 0.0025521606017722 11016.187597139
300 19 0.0031908790774428 0.0040855291379236 0.0026003273137409 11047.947365791
301 20 0.0031946468455085 0.0042505417680931 0.002441416089819 11093.420351439
302 20 0.0031470411090625 0.0040616913682858 0.0025889623735913 11065.44590201
303 20 0.0031372635888218 0.0040651369201561 0.0026340913497121 11153.216152507
304 20 0.0031644681825843 0.0041826600767115 0.0025786752395426 11051.771706805
305 20 0.0030851537349646 0.0041201572133928 0.0025043294793746 11022.775645587
306 20 0.0031451041557925 0.0040952809755662 0.0025647235310798 11035.451102822
307 20 0.0031865431031101 0.004093456934284 0.0025625798567924 11007.707154488
308 20 0.0031480808878488 0.0041029432707453 0.0024955422196352 11023.312822035
309 20 0.0031213382645944 0.0041243008054309 0.0025269067090477 11011.326407015
310 20 0.0031155760112455 0.0041762643738486 0.0024893292314582 11032.562397324
311 20 0.0032113779021823 0.004160903089894 0.0024921639430799 11055.123408448
312 20 0.0031266583578349 0.0040761370424311 0.0025425526412384 11019.487773787
313 20 0.003074458567967 0.0041112704228459 0.0025786167414383 11157.656652252
314 20 0.0031658388646642 0.0041110073813985 0.0025609107838247 11006.160277487
315 20 0.0031236938857172 0.0041583043560225 0.0024991401148327 11026.858537597
316 21 0.0031148355880284 0.0040399031316624 0.0025258848117396 11000.248656691
317 21 0.0031902515403898 0.0041092107131366 0.0025375692170203 11020.434653823
318 21 0.0030785784771139 0.0041583178912499 0.00252869282805 11080.106006285
319 21 0.0031936600353103 0.0041215247968568 0.0025670379502549 11014.394389769
320 21 0.0031418889094072 0.0042365782766834 0.0026131337045015 11149.597770217
321 21 0.0032133652585448 0.0041424262655923 0.0025391718268063 11033.569116022
322 21 0.0031923657323779 0.0040862384419955 0.002566201676933 11006.677483362
323 21 0.0031461817172963 0.0040965508890427 0.0025955447054018 11084.891930749
324 21 0.0031412631787244 0.0040619497189619 0.0025919923788546 11078.115802815
325 21 0.0031353183417118 0.0041466550425902 0.0025208888352253 11019.047333238
326 21 0.0031553994474389 0.0041514336285565 0.002542046905123 11018.129932487
327 21 0.003105979697521 0.0040742053485578 0.0025904643156048 11125.654302021
328 21 0.0031549853219017 0.0041079277407757 0.002538732002264 11009.782042909
329 21 0.0031096812516332 0.0041274312310149 0.0025682199613247 11095.570395498
330 21 0.0031519565562124 0.0041198505974704 0.0025532467962622 11012.873511793
331 22 0.0030909722632053 0.0041059197902589 0.0025425145010806 11074.343327915
332 22 0.0031678012333437 0.0041054851315381 0.0025130257864194 11022.370092252
333 22 0.0031258076244918 0.0040071737398262 0.0024998557107516 10994.581966274
334 22 0.0031308015654425 0.0041323590351105 0.0025869394276492 11098.906181285
335 22 0.0032179824168794 0.0040037206286287 0.002603622946573 11145.317885388
336 22 0.0030908575849891 0.0041129009380803 0.0025852550004909 11146.156477004
337 22 0.0031121792108983 0.0041439063425803 0.0025171381524825 11013.339928027
338 22 0.003119883505569 0.0040595275558572 0.0025907385251411 11104.107124719
339 22 0.0031371437029769 0.0039866893671909 0.0025037184373983 10991.793863993
340 22 0.0031009370045733 0.0040071730911486 0.0025413162734771 11037.43191633
341 22 0.0032768474389514 0.0040638794714857 0.002536843381402 11035.398323135
342 22 0.0031003800627149 0.0041120745103355 0.0026001338087746 11157.325096866
343 22 0.0031545336924927 0.0041010657772222 0.002578554249046 11046.983549398
344 22 0.0031389068732451 0.0040879989427131 0.0025654728289203 11043.321717767
345 22 0.0031367611365134 0.0041448704221098 0.0025500686129343 11033.136856532

86 APPENDIX B. SIMULATION EXAMPLES

346 23 0.003144170427076 0.0040405189634146 0.0025105814043146 11002.643117038
347 23 0.0031208759855442 0.0041199634752177 0.0025348711630061 11024.086675085
348 23 0.0030583488226862 0.0041179735750572 0.0025071691539436 11064.468095316
349 23 0.0031034428976233 0.0040107439105456 0.0025050226741636 10986.926217527
350 23 0.0031414506561016 0.0039774630981982 0.0025657289290502 11089.321934123
351 23 0.0031564453048978 0.0041823420769875 0.0024695579837203 11054.231083309
352 23 0.0031786111811131 0.004203716301549 0.0025211541858295 11043.486142561
353 23 0.0031051661047305 0.0039687722111949 0.0025559459847894 11072.330964077
354 23 0.0030632132867812 0.0041855990817783 0.002475213024111 11025.993713046
355 23 0.0031121901704425 0.0040319285217203 0.0025278589673036 11005.353923172
356 23 0.0030753333816585 0.004072843516708 0.0025157616008613 11044.997222963
357 23 0.0031393235181843 0.0041317524180868 0.0025691415570144 11058.213039131
358 23 0.0031790634521013 0.0039370514258901 0.0024923749303104 11023.187367198
359 23 0.0031924437994003 0.0040194646498511 0.0024653596554951 11031.250761202
360 23 0.0031529072495245 0.0039321607318536 0.0024814644348328 11003.239159094

B.2.3 SQP after SAE
Label Iter Annot Section1 Section2 Section3 Cost

1 1 1 START 0.00310344 0.00401074 0.00250502 10986.925632842
5 2 1 LINE 0.0029426421233814 0.0038881110652061 0.0027325767440789 11556.247565386
6 3 1 LINE 0.0030855520235787 0.0039970981314611 0.0025303345735391 11038.404071115
7 4 1 LINE 0.0031011110869627 0.0040089639061174 0.002508315813845 10984.565484706
8 5 2 NEWITER 0.0031011110869627 0.0040089639061174 0.002508315813845 10984.565484706
12 6 2 LINE 0.0028146825655394 0.0037905255334729 0.0025063966925447 11372.998971162
13 7 2 LINE 0.0030650805522989 0.0039814860162817 0.0025080744029471 11027.069391362
14 8 2 LINE 0.0030960897059285 0.0040051344610046 0.0025082821697119 10989.416740026
15 9 2 LINE 0.0031003061931675 0.0040083500716784 0.0025083104209155 10984.377053174
16 10 3 NEWITER 0.0031003061931675 0.0040083500716784 0.0025083104209155 10984.377053174
20 11 3 LINE 0.00300339732709 0.0037279959958529 0.0024969183120497 11226.270664326
21 12 3 LINE 0.0030858887198419 0.0039666408083928 0.0025066155767558 10992.451130067
22 13 3 LINE 0.0030955935806262 0.0039947166427961 0.0025077564303748 10986.991659741
23 14 3 LINE 0.003098760812247 0.004003879336881 0.0025081287538669 10985.231830023
24 15 3 LINE 0.0030997988921556 0.0040068824669883 0.0025082507852125 10984.657368974
25 16 3 LINE 0.0031001396045247 0.0040078681363623 0.0025082908376097 10984.469073617
26 17 3 LINE 0.003100251482237 0.0040081917948047 0.0025083039893793 10984.407271201
27 18 3 LINE 0.0031002882243741 0.0040082980885661 0.0025083083085964 10984.386977374
28 19 3 LINE 0.0031003002915777 0.0040083329985786 0.0025083097271549 10984.380312596
29 20 3 LINE 0.0031003042548682 0.004008344464244 0.002508310193059 10984.378123685
30 21 3 LINE 0.00300339732709 0.0037279959958529 0.0024969183120497 11226.270664326
31 22 3 LINE 0.0030906153065597 0.0039803146640958 0.0025071712100289 10989.779516947
32 23 3 LINE 0.0030993371045067 0.0040055465309201 0.0025081964998268 10984.912774636
33 24 4 NEWITER 0.0030993371045067 0.0040055465309201 0.0025081964998268 10984.912774636
37 25 4 LINE 0.0030972379245619 0.0036641145606244 0.0025068816279233 11350.696436905
38 26 4 LINE 0.0030991271865122 0.0039714033338905 0.0025080650126365 10989.042786229
39 27 4 LINE 0.003099269262165 0.003994511962652 0.0025081540051426 10982.559714878
40 28 5 NEWITER 0.003099269262165 0.003994511962652 0.0025081540051426 10982.559714878
44 29 5 LINE 0.0030911527605721 0.0022773909799844 0.0025018054080934 14428.508239162
45 30 5 LINE 0.0030984576120057 0.0038227998643852 0.0025075191454376 11155.409959872
46 31 5 LINE 0.003099188097149 0.0039773407528253 0.0025080905191721 10982.721041157
47 32 5 LINE 0.003099230334976 0.0039862765557753 0.0025081235569212 10980.789622866
48 33 6 NEWITER 0.003099230334976 0.0039862765557753 0.0025081235569212 10980.789622866
52 34 6 LINE 0.0030880042605093 0.0015 0.0024986832444542 18892.640724619
53 35 6 LINE 0.0030981077275293 0.0037376489001978 0.0025071795256745 11257.853847753
54 36 6 LINE 0.0030991180742313 0.0039614137902176 0.0025080291537965 10999.768742746
55 37 6 LINE 0.0030992176915157 0.0039834763660131 0.0025081129246903 10980.186491472
56 38 7 NEWITER 0.0030992176915157 0.0039834763660131 0.0025081129246903 10980.186491472
60 39 7 LINE 0.0030877447506265 0.0015 0.0024983100000702 18891.953560988
61 40 7 LINE 0.0030980703974268 0.0037351287294117 0.0025071326322283 11260.901990999
62 41 7 LINE 0.0030991029621068 0.0039586416023529 0.0025080148954441 11002.74623087
63 42 7 LINE 0.0030992062185748 0.003980992889647 0.0025081031217657 10979.6513205
64 43 8 NEWITER 0.0030992062185748 0.003980992889647 0.0025081031217657 10979.6513205
68 44 8 LINE 0.0030853110479826 0.0015 0.0024977157026903 18890.290785665
69 45 8 LINE 0.0030978167015156 0.0037328936006823 0.0025070643798582 11263.503385987
70 46 8 LINE 0.0030990672668689 0.0039561829607506 0.002507999247575 11005.379943271
71 47 8 LINE 0.0030991923234042 0.0039785118967574 0.0025080927343466 10981.469958535
72 48 8 LINE 0.0030992045848489 0.0039807011866759 0.0025081019004639 10979.588737861
73 49 9 NEWITER 0.0030992045848489 0.0039807011866759 0.0025081019004639 10979.588737861
77 50 9 LINE 0.0030850581706105 0.0015 0.0024976736677963 18890.150453921
78 51 9 LINE 0.003097789943425 0.0037326310680083 0.0025070590771972 11263.814518632
79 52 9 LINE 0.0030990631207065 0.0039558941748091 0.0025079976181373 11005.689909681
80 53 9 LINE 0.0030991904384346 0.0039782204854892 0.0025080914722313 10981.779773041
81 54 9 LINE 0.0030992031440275 0.0039804485256776 0.0025081008383418 10979.534559632
82 55 10 NEWITER 0.0030992031440275 0.0039804485256776 0.0025081008383418 10979.534559632

B.3 Monte-Carlo simulation
Section1 Section2 Section3 Stress_beam28

1 0.0045663308856927 0.0029498492171963 0.0019121861233716 1.2226499031188E8
2 0.0046692907762321 0.0029360031751839 0.0020925607555287 1.1176195248757E8
3 0.0046648735512399 0.002818422599263 0.0018209999765142 1.2836107550659E8
4 0.0046134616790455 0.0029706120628772 0.0019907433384046 1.1745769365586E8
5 0.0046250809295266 0.0030082683330667 0.0019503022467234 1.1988421851236E8
6 0.0045523066075103 0.0030601857200046 0.0019816297601764 1.1799687563887E8

B.3. MONTE-CARLO SIMULATION 87

7 0.0046627262391023 0.0030910746690982 0.0019372598820977 1.2068834782207E8
8 0.0046460650909472 0.0030392679504026 0.0019103367685679 1.2238263185557E8
9 0.0046693518455526 0.0028720712776768 0.0019634000623117 1.1908635505067E8
10 0.0045095184417238 0.0028236099332275 0.0020874450594548 1.1203565809057E8
11 0.004672805530112 0.0030710247158521 0.002016146466105 1.1598309906598E8
12 0.0044845141340081 0.0030518711797196 0.0019973943347102 1.170695688546E8
13 0.0046437413051991 0.0031126972422655 0.0017596428096774 1.3282020766893E8
14 0.0045526730296441 0.0032167791589486 0.0020169335587439 1.1593969032241E8
15 0.004610018819424 0.0032842567862996 0.0020574691266479 1.1366340139211E8
16 0.0046476344738361 0.0031220896285288 0.0017998936307529 1.2986203988009E8
17 0.0047097234403487 0.0032978032528677 0.00202811920622 1.1530155395607E8
18 0.0046221297232921 0.0030250001996253 0.0019991365476021 1.1696655691745E8
19 0.0045853532802319 0.0029267072448951 0.0020280515031101 1.1530475985186E8
20 0.004510817933606 0.0031000739599817 0.0017822030008653 1.3114704226578E8
21 0.0045878232044879 0.0030558936906698 0.001934687345409 1.2084871962399E8
22 0.0046491058860518 0.0030002359747997 0.001797400937851 1.3004074932504E8
23 0.0045466592984873 0.0030682348021355 0.0019071263054554 1.225889204033E8
24 0.0046644232965529 0.0030213487170601 0.0020272681533987 1.1534894529394E8
...
494 0.0046903010015453 0.0030491178620547 0.0019585390475546 1.1938155211932E8
495 0.0045404549747006 0.0029595526624506 0.0020026661231019 1.1676156160192E8
496 0.0045496374047243 0.0030954752725733 0.002059024440556 1.135775675159E8
497 0.0046678679671919 0.0028768456550916 0.001960770162691 1.1924552326994E8
498 0.0046607559055065 0.0028961403423457 0.0021336334209994 1.0961778631284E8
499 0.0046475659328288 0.003223577253519 0.0018890341945134 1.2375825926352E8
500 0.0045351078711727 0.0032004524837807 0.0020052851704349 1.1661079326272E8

Appendix C

Proof of Concept Code Listings

C.1 Analysis pattern

C.1.1 Example 1 WSDL file

Listing C.1: Example 1 WSDL file
1 <?xml version="1.0" encoding="UTF -8"?>
2 <wsdl:definitions targetNamespace="http :// formula" xmlns:

apachesoap="http ://xml.apache.org/xml -soap" xmlns:impl
="http :// formula" xmlns:intf="http :// formula" xmlns:
wsdl="http :// schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap
="http :// schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="
http ://www.w3.org /2001/ XMLSchema">

3 <!--WSDL created by Apache Axis version: 1.4
4 Built on Apr 22, 2006 (06:55:48 PDT)-->
5 <wsdl:types >
6 <schema elementFormDefault="qualified" targetNamespace=

"http :// formula" xmlns="http ://www.w3.org /2001/
XMLSchema">

7 <element name="squareValue">
8 <complexType >
9 <sequence >
10 <element name="value" type="xsd:double"/>
11 </sequence >
12 </complexType >
13 </element >
14 <element name="squareValueResponse">
15 <complexType >

88

C.1. ANALYSIS PATTERN 89

16 <sequence >
17 <element name="squareValueReturn" type="xsd:double"

/>
18 </sequence >
19 </complexType >
20 </element >
21 </schema >
22 </wsdl:types >
23

24 <wsdl:message name="squareValueRequest">
25

26 <wsdl:part element="impl:squareValue" name="
parameters"/>

27

28 </wsdl:message >
29

30 <wsdl:message name="squareValueResponse">
31

32 <wsdl:part element="impl:squareValueResponse" name=
"parameters"/>

33

34 </wsdl:message >
35

36 <wsdl:portType name="Formula">
37

38 <wsdl:operation name="squareValue">
39

40 <wsdl:input message="impl:squareValueRequest"
name="squareValueRequest"/>

41

42 <wsdl:output message="impl:squareValueResponse"
name="squareValueResponse"/>

43

44 </wsdl:operation >
45

46 </wsdl:portType >
47

48 <wsdl:binding name="FormulaSoapBinding" type="impl:
Formula">

49

50 <wsdlsoap:binding style="document" transport="http
:// schemas.xmlsoap.org/soap/http"/>

51

90 APPENDIX C. PROOF OF CONCEPT CODE LISTINGS

52 <wsdl:operation name="squareValue">
53

54 <wsdlsoap:operation soapAction=""/>
55

56 <wsdl:input name="squareValueRequest">
57

58 <wsdlsoap:body use="literal"/>
59

60 </wsdl:input >
61

62 <wsdl:output name="squareValueResponse">
63

64 <wsdlsoap:body use="literal"/>
65

66 </wsdl:output >
67

68 </wsdl:operation >
69

70 </wsdl:binding >
71

72 <wsdl:service name="FormulaService">
73

74 <wsdl:port binding="impl:FormulaSoapBinding" name="
Formula">

75

76 <wsdlsoap:address location="http :// localhost
:8080/ Analysis/services/Formula"/>

77

78 </wsdl:port >
79

80 </wsdl:service >
81

82 </wsdl:definitions >

C.1.2 Example 2 WSDL file

Listing C.2: Example 2 WSDL file
1 <?xml version="1.0" encoding="utf -8"?>
2 <wsdl:definitions xmlns:soap="http :// schemas.xmlsoap.org/

wsdl/soap/" xmlns:tm="http :// microsoft.com/wsdl/mime/
textMatching/" xmlns:soapenc="http :// schemas.xmlsoap.

C.1. ANALYSIS PATTERN 91

org/soap/encoding/" xmlns:mime="http :// schemas.xmlsoap
.org/wsdl/mime/" xmlns:tns="http :// tempuri.org/
Rosebrock" xmlns:s="http ://www.w3.org /2001/ XMLSchema"
xmlns:soap12="http :// schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http :// schemas.xmlsoap.org/wsdl/http/"

targetNamespace="http :// tempuri.org/Rosebrock" xmlns:
wsdl="http :// schemas.xmlsoap.org/wsdl/">

3 <wsdl:types >
4 <s:schema elementFormDefault="qualified"

targetNamespace="http :// tempuri.org/Rosebrock">
5 <s:element name="Rosenbrock">
6 <s:complexType >
7 <s:sequence >
8 <s:element minOccurs="0" maxOccurs="1" name="

inputValues" type="tns:ArrayOfDouble" />
9 </s:sequence >
10 </s:complexType >
11 </s:element >
12 <s:complexType name="ArrayOfDouble">
13 <s:sequence >
14 <s:element minOccurs="0" maxOccurs="unbounded"

name="double" type="s:double" />
15 </s:sequence >
16 </s:complexType >
17 <s:element name="RosenbrockResponse">
18 <s:complexType >
19 <s:sequence >
20 <s:element minOccurs="1" maxOccurs="1" name="

RosenbrockResult" type="s:double" />
21 </s:sequence >
22 </s:complexType >
23 </s:element >
24 </s:schema >
25 </wsdl:types >
26 <wsdl:message name="RosenbrockSoapIn">
27 <wsdl:part name="parameters" element="tns:Rosenbrock"

/>
28 </wsdl:message >
29 <wsdl:message name="RosenbrockSoapOut">
30 <wsdl:part name="parameters" element="tns:

RosenbrockResponse" />
31 </wsdl:message >
32 <wsdl:portType name="ServiceSoap">

92 APPENDIX C. PROOF OF CONCEPT CODE LISTINGS

33 <wsdl:operation name="Rosenbrock">
34 <wsdl:input message="tns:RosenbrockSoapIn" />
35 <wsdl:output message="tns:RosenbrockSoapOut" />
36 </wsdl:operation >
37 </wsdl:portType >
38 <wsdl:binding name="ServiceSoap" type="tns:ServiceSoap"

>
39 <soap:binding transport="http :// schemas.xmlsoap.org/

soap/http" />
40 <wsdl:operation name="Rosenbrock">
41 <soap:operation soapAction="http :// tempuri.org/

Rosebrock/Rosenbrock" style="document" />
42 <wsdl:input >
43 <soap:body use="literal" />
44 </wsdl:input >
45 <wsdl:output >
46 <soap:body use="literal" />
47 </wsdl:output >
48 </wsdl:operation >
49 </wsdl:binding >
50 <wsdl:binding name="ServiceSoap12" type="tns:

ServiceSoap">
51 <soap12:binding transport="http :// schemas.xmlsoap.org

/soap/http" />
52 <wsdl:operation name="Rosenbrock">
53 <soap12:operation soapAction="http :// tempuri.org/

Rosebrock/Rosenbrock" style="document" />
54 <wsdl:input >
55 <soap12:body use="literal" />
56 </wsdl:input >
57 <wsdl:output >
58 <soap12:body use="literal" />
59 </wsdl:output >
60 </wsdl:operation >
61 </wsdl:binding >
62 <wsdl:service name="Service">
63 <wsdl:port name="ServiceSoap" binding="tns:

ServiceSoap">
64 <soap:address location="http :// localhost :1430/

Rosenbrock/Service.asmx" />
65 </wsdl:port >
66 <wsdl:port name="ServiceSoap12" binding="tns:

ServiceSoap12">

C.2. EXPERIMENT LOOP PATTERN 93

67 <soap12:address location="http :// localhost :1430/
Rosenbrock/Service.asmx" />

68 </wsdl:port >
69 </wsdl:service >
70 </wsdl:definitions >

C.2 Experiment loop pattern

Listing C.3: Random DOE WSDL file
1 <?xml version="1.0" encoding="UTF -8"?>
2 <wsdl:definitions targetNamespace="http :// random" xmlns:

apachesoap="http ://xml.apache.org/xml -soap" xmlns:impl
="http :// random" xmlns:intf="http :// random" xmlns:wsdl
="http :// schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="
http :// schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http
://www.w3.org /2001/ XMLSchema">

3 <!--WSDL created by Apache Axis version: 1.4
4 Built on Apr 22, 2006 (06:55:48 PDT)-->
5 <wsdl:types >
6 <schema elementFormDefault="qualified" targetNamespace=

"http :// random" xmlns="http :// www.w3.org /2001/
XMLSchema">

7 <element name="generateDOE">
8 <complexType >
9 <sequence >
10 <element name="num" type="xsd:int"/>
11 </sequence >
12 </complexType >
13 </element >
14 <element name="generateDOEResponse">
15 <complexType >
16 <sequence >
17 <element maxOccurs="unbounded" name="

generateDOEReturn" type="impl:ArrayOf_xsd_double
"/>

18 </sequence >
19 </complexType >
20 </element >
21 <complexType name="ArrayOf_xsd_double">
22 <sequence >

94 APPENDIX C. PROOF OF CONCEPT CODE LISTINGS

23 <element maxOccurs="unbounded" minOccurs="0" name="
item" type="xsd:double"/>

24 </sequence >
25 </complexType >
26 </schema >
27 </wsdl:types >
28

29 <wsdl:message name="generateDOERequest">
30

31 <wsdl:part element="impl:generateDOE" name="
parameters"/>

32

33 </wsdl:message >
34

35 <wsdl:message name="generateDOEResponse">
36

37 <wsdl:part element="impl:generateDOEResponse" name=
"parameters"/>

38

39 </wsdl:message >
40

41 <wsdl:portType name="RandomDOE3">
42

43 <wsdl:operation name="generateDOE">
44

45 <wsdl:input message="impl:generateDOERequest"
name="generateDOERequest"/>

46

47 <wsdl:output message="impl:generateDOEResponse"
name="generateDOEResponse"/>

48

49 </wsdl:operation >
50

51 </wsdl:portType >
52

53 <wsdl:binding name="RandomDOE3SoapBinding" type="impl:
RandomDOE3">

54

55 <wsdlsoap:binding style="document" transport="http
:// schemas.xmlsoap.org/soap/http"/>

56

57 <wsdl:operation name="generateDOE">
58

C.3. OPTIMIZATION LOOP PATTERN 95

59 <wsdlsoap:operation soapAction=""/>
60

61 <wsdl:input name="generateDOERequest">
62

63 <wsdlsoap:body use="literal"/>
64

65 </wsdl:input >
66

67 <wsdl:output name="generateDOEResponse">
68

69 <wsdlsoap:body use="literal"/>
70

71 </wsdl:output >
72

73 </wsdl:operation >
74

75 </wsdl:binding >
76

77 <wsdl:service name="RandomDOE3Service">
78

79 <wsdl:port binding="impl:RandomDOE3SoapBinding"
name="RandomDOE3">

80

81 <wsdlsoap:address location="http :// localhost
:8080/ Analysis/services/RandomDOE3"/>

82

83 </wsdl:port >
84

85 </wsdl:service >
86

87 </wsdl:definitions >

C.3 Optimization loop pattern

Listing C.4: Optimization WSDL file
1 <?xml version="1.0" encoding="utf -8"?>
2 <wsdl:definitions xmlns:soap="http :// schemas.xmlsoap.org/

wsdl/soap/" xmlns:tm="http :// microsoft.com/wsdl/mime/
textMatching/" xmlns:soapenc="http :// schemas.xmlsoap.
org/soap/encoding/" xmlns:mime="http :// schemas.xmlsoap
.org/wsdl/mime/" xmlns:tns="http :// tempuri.org/L-BSFG"

96 APPENDIX C. PROOF OF CONCEPT CODE LISTINGS

xmlns:s="http ://www.w3.org /2001/ XMLSchema" xmlns:
soap12="http :// schemas.xmlsoap.org/wsdl/soap12/" xmlns
:http="http :// schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http :// tempuri.org/L-BSFG" xmlns:wsdl
="http :// schemas.xmlsoap.org/wsdl/">

3 <wsdl:types >
4 <s:schema elementFormDefault="qualified"

targetNamespace="http :// tempuri.org/L-BSFG">
5 <s:element name="HelloWorld">
6 <s:complexType />
7 </s:element >
8 <s:element name="HelloWorldResponse">
9 <s:complexType >
10 <s:sequence >
11 <s:element minOccurs="0" maxOccurs="1" name="

HelloWorldResult" type="s:string" />
12 </s:sequence >
13 </s:complexType >
14 </s:element >
15 <s:element name="init">
16 <s:complexType >
17 <s:sequence >
18 <s:element minOccurs="0" maxOccurs="1" name="

startValues" type="tns:ArrayOfInt" />
19 </s:sequence >
20 </s:complexType >
21 </s:element >
22 <s:complexType name="ArrayOfInt">
23 <s:sequence >
24 <s:element minOccurs="0" maxOccurs="unbounded"

name="int" type="s:int" />
25 </s:sequence >
26 </s:complexType >
27 <s:element name="initResponse">
28 <s:complexType />
29 </s:element >
30 <s:element name="hasConverged">
31 <s:complexType />
32 </s:element >
33 <s:element name="hasConvergedResponse">
34 <s:complexType >
35 <s:sequence >

C.3. OPTIMIZATION LOOP PATTERN 97

36 <s:element minOccurs="1" maxOccurs="1" name="
hasConvergedResult" type="s:boolean" />

37 </s:sequence >
38 </s:complexType >
39 </s:element >
40 <s:element name="iterate">
41 <s:complexType >
42 <s:sequence >
43 <s:element minOccurs="0" maxOccurs="1" name="

functionValues" type="tns:ArrayOfDouble"
/>

44 </s:sequence >
45 </s:complexType >
46 </s:element >
47 <s:complexType name="ArrayOfDouble">
48 <s:sequence >
49 <s:element minOccurs="0" maxOccurs="unbounded"

name="double" type="s:double" />
50 </s:sequence >
51 </s:complexType >
52 <s:element name="iterateResponse">
53 <s:complexType >
54 <s:sequence >
55 <s:element minOccurs="0" maxOccurs="1" name="

iterateResult" type="tns:
ArrayOfArrayOfDouble" />

56 </s:sequence >
57 </s:complexType >
58 </s:element >
59 <s:complexType name="ArrayOfArrayOfDouble">
60 <s:sequence >
61 <s:element minOccurs="0" maxOccurs="unbounded"

name="ArrayOfDouble" nillable="true" type="
tns:ArrayOfDouble" />

62 </s:sequence >
63 </s:complexType >
64 </s:schema >
65 </wsdl:types >
66 <wsdl:message name="HelloWorldSoapIn">
67 <wsdl:part name="parameters" element="tns:HelloWorld"

/>
68 </wsdl:message >
69 <wsdl:message name="HelloWorldSoapOut">

98 APPENDIX C. PROOF OF CONCEPT CODE LISTINGS

70 <wsdl:part name="parameters" element="tns:
HelloWorldResponse" />

71 </wsdl:message >
72 <wsdl:message name="initSoapIn">
73 <wsdl:part name="parameters" element="tns:init" />
74 </wsdl:message >
75 <wsdl:message name="initSoapOut">
76 <wsdl:part name="parameters" element="tns:

initResponse" />
77 </wsdl:message >
78 <wsdl:message name="hasConvergedSoapIn">
79 <wsdl:part name="parameters" element="tns:

hasConverged" />
80 </wsdl:message >
81 <wsdl:message name="hasConvergedSoapOut">
82 <wsdl:part name="parameters" element="tns:

hasConvergedResponse" />
83 </wsdl:message >
84 <wsdl:message name="iterateSoapIn">
85 <wsdl:part name="parameters" element="tns:iterate" />
86 </wsdl:message >
87 <wsdl:message name="iterateSoapOut">
88 <wsdl:part name="parameters" element="tns:

iterateResponse" />
89 </wsdl:message >
90 <wsdl:portType name="ServiceSoap">
91 <wsdl:operation name="HelloWorld">
92 <wsdl:input message="tns:HelloWorldSoapIn" />
93 <wsdl:output message="tns:HelloWorldSoapOut" />
94 </wsdl:operation >
95 <wsdl:operation name="init">
96 <wsdl:input message="tns:initSoapIn" />
97 <wsdl:output message="tns:initSoapOut" />
98 </wsdl:operation >
99 <wsdl:operation name="hasConverged">
100 <wsdl:input message="tns:hasConvergedSoapIn" />
101 <wsdl:output message="tns:hasConvergedSoapOut" />
102 </wsdl:operation >
103 <wsdl:operation name="iterate">
104 <wsdl:input message="tns:iterateSoapIn" />
105 <wsdl:output message="tns:iterateSoapOut" />
106 </wsdl:operation >
107 </wsdl:portType >

C.3. OPTIMIZATION LOOP PATTERN 99

108 <wsdl:binding name="ServiceSoap" type="tns:ServiceSoap"
>

109 <soap:binding transport="http :// schemas.xmlsoap.org/
soap/http" />

110 <wsdl:operation name="HelloWorld">
111 <soap:operation soapAction="http :// tempuri.org/L-

BSFG/HelloWorld" style="document" />
112 <wsdl:input >
113 <soap:body use="literal" />
114 </wsdl:input >
115 <wsdl:output >
116 <soap:body use="literal" />
117 </wsdl:output >
118 </wsdl:operation >
119 <wsdl:operation name="init">
120 <soap:operation soapAction="http :// tempuri.org/L-

BSFG/init" style="document" />
121 <wsdl:input >
122 <soap:body use="literal" />
123 </wsdl:input >
124 <wsdl:output >
125 <soap:body use="literal" />
126 </wsdl:output >
127 </wsdl:operation >
128 <wsdl:operation name="hasConverged">
129 <soap:operation soapAction="http :// tempuri.org/L-

BSFG/hasConverged" style="document" />
130 <wsdl:input >
131 <soap:body use="literal" />
132 </wsdl:input >
133 <wsdl:output >
134 <soap:body use="literal" />
135 </wsdl:output >
136 </wsdl:operation >
137 <wsdl:operation name="iterate">
138 <soap:operation soapAction="http :// tempuri.org/L-

BSFG/iterate" style="document" />
139 <wsdl:input >
140 <soap:body use="literal" />
141 </wsdl:input >
142 <wsdl:output >
143 <soap:body use="literal" />
144 </wsdl:output >

100 APPENDIX C. PROOF OF CONCEPT CODE LISTINGS

145 </wsdl:operation >
146 </wsdl:binding >
147 <wsdl:binding name="ServiceSoap12" type="tns:

ServiceSoap">
148 <soap12:binding transport="http :// schemas.xmlsoap.org

/soap/http" />
149 <wsdl:operation name="HelloWorld">
150 <soap12:operation soapAction="http :// tempuri.org/L-

BSFG/HelloWorld" style="document" />
151 <wsdl:input >
152 <soap12:body use="literal" />
153 </wsdl:input >
154 <wsdl:output >
155 <soap12:body use="literal" />
156 </wsdl:output >
157 </wsdl:operation >
158 <wsdl:operation name="init">
159 <soap12:operation soapAction="http :// tempuri.org/L-

BSFG/init" style="document" />
160 <wsdl:input >
161 <soap12:body use="literal" />
162 </wsdl:input >
163 <wsdl:output >
164 <soap12:body use="literal" />
165 </wsdl:output >
166 </wsdl:operation >
167 <wsdl:operation name="hasConverged">
168 <soap12:operation soapAction="http :// tempuri.org/L-

BSFG/hasConverged" style="document" />
169 <wsdl:input >
170 <soap12:body use="literal" />
171 </wsdl:input >
172 <wsdl:output >
173 <soap12:body use="literal" />
174 </wsdl:output >
175 </wsdl:operation >
176 <wsdl:operation name="iterate">
177 <soap12:operation soapAction="http :// tempuri.org/L-

BSFG/iterate" style="document" />
178 <wsdl:input >
179 <soap12:body use="literal" />
180 </wsdl:input >
181 <wsdl:output >

C.3. OPTIMIZATION LOOP PATTERN 101

182 <soap12:body use="literal" />
183 </wsdl:output >
184 </wsdl:operation >
185 </wsdl:binding >
186 <wsdl:service name="Service">
187 <wsdl:port name="ServiceSoap" binding="tns:

ServiceSoap">
188 <soap:address location="http :// localhost :3572/L-

BGFS/Service.asmx" />
189 </wsdl:port >
190 <wsdl:port name="ServiceSoap12" binding="tns:

ServiceSoap12">
191 <soap12:address location="http :// localhost :3572/L-

BGFS/Service.asmx" />
192 </wsdl:port >
193 </wsdl:service >
194 </wsdl:definitions >

Bibliography

[AA07] Alexandre Alves and Assaf Arkin. Web services business pro-
cess execution language version 2.0. Technical report, Oasis,
2007.

[Bey98] Hans-Georg Beyer. The Theory of Evolution Strategies.
Springer, 1998.

[BM04] P. V. Biron and A. Malhotra. W3c recommendation, xml
schema part 2: Datatypes second edition. http://www.w3.
org/TR/2004/REC-xmlschema-2-20041028/, 2004.

[Boc00] Sergey Bochkanov. L-bfgs algorithm for multivariate
optimization (bsd licensed). http://www.alglib.net/
optimization/lbfgs.php, 2000.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. W3c note, web services definition language (wsdl)
1.1. http://www.w3.org/TR/2001/NOTE-wsdl-20010315,
2001.

[CD99] J. Clarck and S. DeRose. W3c recommandation, xml path
language (xpath) version 1.0. http://www.w3.org/TR/1999/
RECxpath-19991116, 1999.

[CNdPJ02] McCulloch F Colin, Tzannetakis Nick, and Van de Peer Joost.
Multi-disciplinary design optimization in support of the func-
tional performance engineering process. Technical report,
LMS International, 2002.

[dPJ02] Van de Peer Joost. Design by objective: Revolutionizing prod-
uct development with process integration and design optimiza-
tion. Technical report, Noesis Solutions, 2002.

103

104 BIBLIOGRAPHY

[End09] Active Endpoints. Activevos tutorial. http://infocenter.
activevos.com/infocenter/ActiveVOS/v60/index.jsp?
topic=/com.activee.bpel.doc/html/UG3.html, 2009.

[Esp08] Dino Esposito. Programming Microsoft ASP.NET 3.5. Mi-
crosoft, 2008.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The Java Language Specification: Second Edition. Addison-
Wesley, 2000.

[Hof03] A. H. M. Ter Hofstede. Yawl: Yet another workflow language
(revised version. Technical report, 2003.

[JDVJ08] Niels Joncheere, Dirk Deridder, Ragnhild Van Der Straeten,
and Viviane Jonckers. A framework for advanced modulariza-
tion and data flow in workflow systems. In Proceedings of the
6th International Conference on Service Oriented Computing
(ICSOC 2008), volume 5364 of Lecture Notes in Computer
Science, pages 592–598, Sydney, NSW, Australia, December
2008. Springer.

[Kne04] Sean Kneipp. Yawl engine user manual. Technical report,
Faculty of Information Technology, 2004.

[LA93] Thomas J. Lorenzen and Virgil L. Anderson. Design of Ex-
periments, A No-Name Approach. Marcel Dekker, Inc., 1993.

[LKD+08] Robert Lorenz, Lars M. Kristensen, Philippe Darondeau,
Robin Bergenthum, and Sebastian Mauser. Applications and
Theory of Petri Nets. Springer Berlin / Heidelberg, 2008.

[Min07] Nicholas Charles Russell BSc MinfTech. Foundations of
process-aware information systems. Technical report, 2007.

[MMAC08] Raymond H. Myers, Douglas C. Montgomery, and Chris-
tine M. Anderson-Cook. Response Surface Methodology: Pro-
cess and Product Optimization Using Designed Experiments.
Wiley, John & Sons, Incorporated, 2008.

BIBLIOGRAPHY 105

[NdPJS03] Tzannetakis Nick, Van de Peer Joost, and Donders Stijn. A
system approach to design for six sigma through best in class
simulation process integration & design optimization. Tech-
nical report, LMS International, 2003.

[P.93] Spellucci P. Numerische Verfahren der nichtlinearen Opti-
mierung. Birkhäuser, 1993.

[Pla03] David S. Platt. Introducing Microsoft .NET, Third Edition.
Microsoft, 2003.

[PR09] Srinath Perera and Ajith Ranabahu. Axis2 - the future of web
services. http://www.jaxmag.com/itr/online_artikel/
psecom,id,747,nodeid,147.html, 2009.

[Sol08] Noesis Solutions. Optimus 8. http://www.
noesissolutions.com, 2008.

[Sto85] J. Stoer. Foundations of recursive quadratic programming
methods for solving nonlinear programs. Computational
Mathematical Programming, 15, 1985.

[TBMM04] H. S. Thompson, D. Beech, M. Maloney, and N. Mendel-
sohn. W3c recommendation, xml schema part 1:
Structures second edition. http://www.w3.org/TR/2004/
REC-xmlschema-1-20041028/, 2004.

[TOH+99] Peri Tarr, Harold Ossher, William Harrison, Stanley M. Sut-
ton, and Jr. N degrees of separation: Multi-dimensional sep-
aration of concerns. pages 107–119, 1999.

[vdABtH+00] W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede,
B. Kiepuszewski, and B. Advanced workflow patterns, 2000.

[vdAH03] W.M.P. van der Aalst and A. H. M. Ter Hofstede. Yawl: Yet
another workflow language. Information Systems, 30:245–275,
2003.

[vdAHW03] W.M.P. van der Aalst, A. H. M. Ter Hofstede, and M. Weske.
Business process management: A survey. In Proceedings of
the 1st International Conference on Business Process Man-
agement, volume 2678 of LNCS, pages 1–12. Springer-Verlag,
2003.

106 BIBLIOGRAPHY

[vdAtH09] W.M.P. van der Aalst and A.H.M. ter Hofstede. Work-
flow patterns initiative. http://www.workflowpatterns.
com/about/index.php, 2009.

[vdAtHKB02] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski,
and A.P. Barros. Workflow patterns. Technical report,
Queensland University of Technology, 2002.

