ABMB 2006

Concern-Specific Languages in a Visual Web
Service Creation Environment

2 3

Mathieu Braem ! Niels Joncheere? Wim Vanderperren
Ragnhild Van Der Straecten® Viviane Jonckers?®

System and Software Engineering Lab
Vrige Universiteit Brussel
Pleinlaan 2
B-1050 Brussel, Belgium

Abstract

This paper presents a high-level, visual Service Creation Environment (SCE) for web
services. The SCE introduces two main concepts: services and composition tem-
plates. Composition templates are abstract descriptions of reusable compositions
containing several placeholders for services. Services are verified to be compatible
with the composition template when a service is mapped onto a composition tem-
plate. The SCE supports the modularization of crosscutting concerns using both the
general-purpose AOP language Padus and several concern-specific languages. As-
pects can be visually deployed on a target composition template or service, which
automatically triggers the weaving process.

Key words: Service-Oriented Architecture, Concern-Specific
Languages, Aspect-Oriented Software Development, Web Services

1 Introduction

Over the last years, web services [2] have been gaining a lot of popularity as a
means of integrating existing software in new environments. Basic web services
can be created by exposing existing applications to the internet using XML
front-ends. By composing a number of basic web services, new web services can
be created that provide more advanced functionality. These compound web

Email: mbraem@vub.ac.be
Email: njonchee@vub.ac.be
Email: wvdperre@vub.ac.be
Email: rvdstrae@vub.ac.be
Email: vejoncke@ssel.vub.ac.be

s W

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

services can then be used by other web services, further improving software
reusability.

Originally, the only way to compose web services was by manually writing
the necessary glue-code in programming languages such as C and Java. It
quickly became clear, however, that a composition of web services is more
naturally captured by dedicated workflow languages [14] than by general-
purpose programming languages. Today, the most popular workflow language
with regard to the composition of web services is the Business Process -
ecution Language (WS-BPEL) [3]. WS-BPEL processes are platform- and
transport-independent, and are expressed using XML. Recently, a higher-level
visual notation for WS-BPEL, called the Business Process Modeling Notation
(BPMN) [36], has been proposed.

Meanwhile, aspect-oriented software development (AOSD) has been pro-
posed as a means of improving separation of concerns [26] in software. AOSD
is based on the observation that a number of concerns in software (such as log-
ging [18] and billing [13]) cannot be modularized using object-oriented software
development: a program can only be decomposed in one way (i.e., according
to the class hierarchy), and concerns that do not align with this decomposi-
tion end up scattered across the program and tangled with one another. This
problem is dubbed “the tyranny of the dominant decomposition” [25]. AOSD
allows expressing such crosscutting concerns in well-modularized aspects, so
that adding, modifying or removing such concerns does not require changes
to the main program.

Initial research on AOSD has concentrated on applying its principles to
the object-oriented programming paradigm. Arsanjani et al. [4] and oth-
ers [10,12,35] have shown that AOSD has a lot of potential in a web services
context, too.

Although workflow languages are better suited for web service composi-
tion than general-purpose programming languages, they still require a large
amount of in-depth technical knowledge. In order to facilitate service compo-
sition without requiring such in-depth technical knowledge, a higher level of
abstraction is required. We therefore propose a visual service creation environ-
ment (SCE), which allows user-friendly configuration of web service composi-
tions using reusable composition templates, and which supports encapsulating
crosscutting concerns using both general-purpose and concern-specific aspect
languages. This environment is implemented as a plug-in for the Eclipse plat-
form [15].

The outline of the paper is as follows: Section 2 explains the motivation for
the SCE, and Section 3 provides an overview of the SCE architecture. Next,
the support for concern-specific languages in the SCE is presented. Section 5
describes related work, and Section 6 states our conclusions and future work.

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

2 Motivation for the Service Creation Environment

The research presented in this paper is conducted in the context of the WIT-
CASE project, which is partly funded by Alcatel Belgium, a telecom company;,
and by the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).

In the telecom community, the service delivery platform (SDP) is a cen-
tral ICT infrastructure that is targeted at the development, deployment and
execution of value-added telecom services by network operators as well as by
third-party service providers. Our approach focuses on the development and
configuration of service compositions in a visual service creation environment
(SCE). A number of key requirements for such an environment stated by the
telecom partner are:

e A faster introduction of new services is needed through innovative service
creation mechanisms ranging from using open ICT programming environ-
ments to service composition tools, reuse of common components and inte-
gration of service logic with business applications.

e Fast and easy modification of service and business logic of baseline services
is required.

e The ability to offer service bundles to customers as a strategic move against
competition is also required. This requirement implies that common capa-
bilities must be offered on which these services of the service bundles can
rely, e.g., common billing and the capability to offer flexible tariff packages
for the grouped services.

e A last requirement is the reduction of operational expenses by service pro-
viders. Therefore, different end-user services should as much as possible be
based on generic reusable building blocks. Furthermore, service providers
want to build end-user services and applications on top of an integration
platform instead of deploying a collection of out-of-the box end-user services
and applications. An integration platform offers the additional benefit of
integration with legacy network infrastructure.

In order to meet the above stated requirements, the SCE needs to allow
the configuration of service compositions on a high level of abstraction in order
to facilitate application development without in-depth technical knowledge of
the involved services. In order to achieve this, the following objectives are
pursued:

e A visual SCE that enables easy plug-and-play composition of both internal
and external services.

e The SCE has to guide the service composition process by providing feedback
about the correctness of the resulting service composition.

e The SCE has to allow describing management concerns (e.g., billing) of the
resulting service composition in a concise and declarative manner.

3

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

The current state-of-the-art is insufficient for supporting the envisioned
SCE. Typical workflow languages (such as WS-BPEL) provide visual GUIs in
order to facilitate the creation of workflows. However, these GUIs are nothing
more than a visual interface on top of the language. Examples of such GUIs are
BPWS4J [6] and Oracle BPEL Designer [24]. There is no support for guiding
the service composition process to a correct service composition. Furthermore,
management concerns still have to be encoded in the workflow itself, which
results in a workflow that is tangled with several secondary concerns, and as
such makes the resulting workflow more complex. In the next section, we
introduce our SCE and show how the above stated objectives are met.

3 The Service Creation Environment

In this section, we first introduce the architecture of our visual SCE. Sec-
ondly, we explain how the SCE supports AOSD. Next, the GUI of the SCE
is presented, followed by an explanation on how services can be composed, on
how service compositions can be verified, and finally, on how services can be
deployed.

3.1 Architecture of the SCE

Figure 1 gives an overview of the architecture of the SCE. The SCE contains
three repositories:

e A first repository contains a set of documented services. The services con-
tained in this repository are the basic building blocks of the SCE. Each ser-
vice is described by a WSDL file. In addition, each service is documented
by a WS-BPEL process that specifies the external protocol information and
by a description of basic quality of service requirements.

e Another repository contains a set of documented composition templates.
These templates are specified in WS-BPEL. The templates are abstract de-
scriptions of web service compositions and may contain one or more place-
holders for services. The composition templates can be instantiated by
filling in the placeholders with different services. When services are added
to service composition templates, the SCE checks whether the protocols
of the services are compatible with the protocol of the service composition
template.

* A third repository contains different crosscutting concerns corresponding to
management concerns such as billing schemes. A crosscutting concern can
be connected to services and composition templates visually or through a
pointcut language.

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

—
—— —— |Documented
- Documented Composition () (&)
Services Templates <>
Specific Concerns
- @D| =P
Service composition ‘ + Adg:ogrdfﬁ;‘e;irgfle
" i Il 1
and creation (B2) billing concern
.ss

Service execution l

OO

Fig. 1. SCE architecture
3.2 Aspects and Padus

The SCE supports the modularization of crosscutting concerns through the
Padus [7] language. Padus is our aspect-oriented process language based on
WS-BPEL. A detailed explanation of Padus is outside the scope of this paper.
We only introduce and explain the features of Padus relevant for the SCE and
for defining concern-specific languages.

Padus is an XML-based language, and introduces two main concepts: as-
pects and aspect deployments. An aspect is a reusable description of a cross-
cutting concern, and contains one or more pointcuts and advice. A pointcut
selects interesting points in the execution of the target WS-BPEL process
(called joinpoints), and exposes target objects to the advice. The pointcut
language of Padus is a logic language based on Prolog, and is thus very ex-
pressive [17]. The complete target WS-BPEL process is reified as a collection
of facts that can be queried by the pointcut. The advice language is WS-
BPEL, extended with some AOSD-specific constructs. The Padus technology
is based on a traditional static weaver that processes the target WS-BPEL
processes and generates new WS-BPEL processes containing the advice code
as specified in our visual environment. The main advantage of this approach is
the compatibility with existing infrastructure, as the output can be deployed
on any WS-BPEL-compatible engine.

3.8 SCE GUI

Figure 2 provides a screenshot of the SCE’s interface. The editor view (in
the middle of the screen) is used to edit compositions, and consists of two
main parts: a large drawing canvas, and a smaller palette. The palette con-
tains some selection and connection tools, and shows the available services,
composition templates and aspects as they are loaded from the library. By
double-clicking on an entity, the configured editor for that entity is launched.
For instance, a graphical BPMN-based editor is launched for a composition

bt

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

006 Java - conferenceCall.composition - Eclipse SDK
Ir3- [#-0-Q- | BEEG-|®F|-e-2- [P0 @& & &'ava
[% Package Expl... 8 = O = 85z Outline 2 =g
g p
I BER” — Palette — » || 7y B conferencecall
¥ [=5ceProject %Select v [<messaging>
[conferenceCall.cor i ¥ { I, Marquee [messaging
} Connection v [@<agenda>
= Composition Templates # [l agenda
I8 wakeUpCall M <b2b>
& conferenceCall v @logging
¥ 6ervices "l v [<diskwriting>
B diskWriting W diskwriting
Eb2b
I messaging
[charging
W sms
M agenda
= Aspects 2|
@ logging
bﬁLAspe:ts "l
<D billing (event)
<@ billing (time)
<D billing (data)
(———— MeiiD
Problems|]avadoc‘Declaration|ConsoIe (EI Properties 2 Y &8 Y=O0
Property | value
Name conferenceCall
——— RN € = K

E |

b

Fig. 2. Screenshot of the SCE’s interface

template. The changes made through the visual editor are taken into account
for the composition at hand. As such, a composition template can be adapted
on the fly and at a higher level of abstraction than WS-BPEL code.

The outline view (at the right of the screen) shows a tree-based overview
of the state of the composition, and the properties view (at the bottom of the
screen) shows the properties of the element that is currently selected in the
editor view or in the outline view.

3.4 Composition

In order to create a composition in the SCE, it suffices to drag a composition
template on the composition canvas and fill all the placeholders with concrete
services. Aspects can be connected to services, meaning that they will only
be applied to these concrete services, or to a complete composition template,
in order to apply them to all the services that take part in this composition.

The composition shown in Figure 2 contains a composition template called
“conferenceCall” with three placeholders. Two services called “agenda” and
“messaging” have been added to the composition template’s placeholders,
while one placeholder is still empty. This placeholder should be filled in before
the composition can work, for instance using the “b2b” service available in
the library. The composition also contains an aspect called “logging”, which
is connected to the “messaging” service. A service called “diskWriting” has

6

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

been added to the aspect’s only placeholder. The result of this composition
would be that the conference call application works using the selected services,
and that a logging aspect, which invokes the disk writing service, is deployed
to the messaging service in order to log the messaging actions selected by the
aspect’s pointcut.

3.5 Verification

An important requirement of the SCE is that it guides users in creating cor-
rect compositions without requiring in-depth technical knowledge. The SCE
accomplishes this by verifying whether compositions are correct while they
are created: when a service is dragged onto a placeholder, the SCE checks
whether the service’s protocol is compatible with the composition template’s
protocol. If the service turns out to be incompatible, a report is generated
that provides mismatch feedback to the user. Compatibility checking based on
protocols rather than plain APIs is possible because every service is explicitly
documented with a protocol specification expressed in WS-BPEL.

In literature, a wealth of research exists on the topic of protocol verifi-
cation [9,21,33,27,38]. Our verification engine is based on the PacoSuite ap-
proach [37], which introduces algorithms based on automata theory to perform
protocol verification. In order to provide protocol verification in the SCE, the
WS-BPEL specifications of each service, aspect and composition template are
translated into deterministic finite automata (DFA). By applying the algo-
rithms introduced by the PacoSuite approach, the SCE can decide whether
the service’s protocol is compatible with the composition template’s protocol.

In case a certain service is not compatible with a certain composition
template placeholder, the user has two options: Either select another service
for that placeholder, or edit the composition template on the fly as described
in Section 3.3.

3.6 Code Generation and Deployment

When the composition is complete and verified, the user may choose to gen-
erate the resulting composition and deploy it on a WS-BPEL engine. This
will start the code generation process, which will bind the unbound partner
links in the composition templates. An aspect deployment is automatically
generated for the aspects contained in the composition. The Padus weaver
is then employed to weave the aspects into the resulting WS-BPEL processes
based on the aspect deployment specification.

A resulting composition can also be imported back into the library as a
new service. The generated WS-BPEL process then serves as documentation
for the new service. Apart from specifying a name and some other properties,
this process is also automated.

The SCE also includes a built-in WS-BPEL engine that can be used to
immediately execute a resulting composition. This feature is meant to be able

7

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

to quickly assess the result rather than to be the real deployment target. We
are currently working on improving the integration of this engine, so that it
can be used as a debugger for compositions by providing feedback directly to

the SCE.

4 Concern-Specific Languages

Aspect-oriented principles are supported by the SCE through the use of the
Padus aspect-oriented programming language. One or more aspects describe
a concern, and are written in Padus. If a user of the SCE wants to express as-
pects, the only possibility is to specify these aspects in Padus, which requires
in-depth knowledge of the Padus language. This is in contradiction with our
research objective, which states that the SCE should allow the description of
management concerns in an intuitive, concise and declarative manner. There-
fore, we need the ability to visually specify concerns on a higher level of
abstraction.

The earliest aspect-oriented programming languages are each developed for
a particular crosscutting concern; we name these concern-specific languages
(CSLs). Examples of these early CSLs are COOL [19,20], a language for
expressing the aspect of synchronization for programs written in Java, and
RIDL [19,20], a language for expressing the aspect of data serializability in
distributed environments. A recent concern-specific language is KALA [16].
KALA is a powerful aspect language for describing the use of advanced trans-
action models by an application, which also allows new models to be defined
if needed. However, since a new language has to be devised for each concern,
construction of concern-specific languages was quickly deemed too costly. In-
stead, more approaches opt for general-purpose aspect languages, such as
AspectJ [18].

Our objective is to enable the definition of concern-specific languages on
top of the Padus technology and integrated in the SCE. The implementation
of a crosscutting concern is thus defined in a specific CSL, built on Padus. To
apply the concern to the service process or service composition process, a user
can select the relevant aspects, add them to the service process and concretize
them.

The remainder of this section contains an example of a concern-specific
language: Billing. First, we define this language, and next, we show how this
language is integrated in the SCE and how it can be used in a concrete service
composition.

4.1 The Need for a Billing Language

Billing is a concern that occurs in many systems. It can be as simple as
deducting a fixed fee from a client’s account after the execution of an operation,
but it can also require complicated schemes based on the client’s location, the

8

W N O U W N =

©

11
12
13
14

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

<concern language="billing" type="time" name="billcall">

<!-- specify when billing should occur: -—>
<start when="invoking(Service, Port, ‘connect’, User)" />
<end when="invoking(Service, Port2, ‘disconnect’, User)" />

<!-- specify what should be charged: -—>

<advice>
<begin> <charge type="setup" context="User" /> </begin>
<success> <charge type="time" context="User, $Time" /> </success>
<fail> <!-- do nothing --> </fail>
<finally> <!-- do mothing -—-> </finally>

</advice>

</concern>

Listing 1: Billing example

client’s account type, which operation was executed, how long it took, etc.

We recognize two important patterns in the billing concern. On the one
hand there is the issue of when billing starts and ends. On the other hand
there is the issue of what should be charged. In our approach we separate
these two parts. Our dedicated Billing language selects the points in a process
execution where billing starts and ends, and allows us to add extra behavior at
each of these points. Typically, we pass the information about the operation
and associated timestamps to a dedicated charging service. This service keeps
a complete log of all charged events. At a later time, a program may collect
these logs and create bills for the customers, possibly affected by business
rules. This is the issue of what should be charged, and can greatly vary on
the context of the events. Therefore, the Billing CSL exposes the context of
the process events to a large extent.

4.2 Definition of Billing

The Billing language allows expressing billing concerns in dedicated XML-
based modules, which are specified separate from the main functionality of
service compositions. Listing 1 provides an example of such a module.

The main element of a Billing module is the concern element. Its at-
tributes specify the language and the type of the module. In our example,
line 1 specifies that the module is specified using the billing language, and
that its type is time. Modules that are expressed using another concern-
specific language would also contain a concern element, but its language
attribute would indicate that another language is used, and that its contents
are thus different than those of a Billing module.

There are three types of Billing modules: event-based modules are used to
perform billing based on events that occur during the execution of a service
(e.g., when a text message has been sent), time-based modules are used to
perform billing based on the time that has passed between two events (e.g.,
between the start and the end of a telephone call), and data-based modules are
used to perform billing based on the volume of data that has been exchanged

9

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

between two services.

The children of the concern element specify when billing should occur,
and what should be charged. Because our example is a time-based module, it
specifies both when billing should start (using the start element in line 4) and
when billing should end (using the end element in line 5). The when attributes
of the start and end elements are Padus pointcuts that select certain points
in the execution of a service.

Each module specifies what should be charged in the advice element. This
element has four children: the begin element specifies what should be done
when the concern is activated, the success element specifies what should
be done when the concern terminates successfully, the fail element specifies
what should be done when an exception is thrown while the concern is active,
and the finally element specifies what should be done when the concern
terminates, regardless of whether it terminates successfully or not.

Each of these four elements may contain regular WS-BPEL code in order
to perform the charging. Alternatively, one may use the Billing language’s
dedicated charge element in order to perform the charging without writing
WS-BPEL code. In our example, line 9 sends a message to the charging
service which specifies that the user has started a connection, and line 10
sends a message to the charging service which specifies that the user has
ended a connection with a certain duration. In the advice code, variables that
were bound in the Padus pointcut may be used. Additionally, we expose some
context of the process by means of the $Time variable. In the example, the
duration of the call is retrieved from the concern’s context using the $Time
variable and passed to the charging process.

In order to perform the actual charging, each Billing module contains an
implicit partner link that refers to a charging service. This partner link will
be employed when the charge element is used in the module’s advice, and it
can be linked to a concrete service using the SCE’s interface (see Section 4.3).
If one wants to use another partner link or more than one partner link, this
can be specified in the optional using child of the concern element.

4.8 Visualization of Billing

In Section 3, we illustrate how the SCE can be used to create new composi-
tions, by dragging a composition template on the canvas, filling its placehold-
ers with services, and adding an aspect to a service. This aspect is retrieved
from a repository of crosscutting concerns, and is implemented using the Padus
language. Using the SCE, it is straightforward to change when such aspects
are applicable or which services are used by the aspect. However, changing
what the aspect actually does (i.e., changing the aspect’s advice) requires
in-depth knowledge of the Padus language. Therefore, the SCE also allows
adding concern-specific aspects, which allow specifying an advice without in-
depth knowledge of Padus.

10

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

8ene Java - conferenceCall.composition - Eclipse SDK
| e5- [#- O - Q- | BHFG- | @L |- [P0 8 £ &Java
[% Package Expl... 32~ T O m = O|[5= outline 52 =0
‘ BE®Y —Palette — ' || v Econferencecall
¥ [=5ceProject I Select w [<messaging>
& conferenceCall.cor =, Marquee Emessaging
} Connection v [@<agenda>
L Composition Templates # Eagenda
B wakeUpCall v E<bzb>
& conferencecCall -rbzh
EEervices =5 v Ohbilling (Ilme_)
. v [@<charging>
I messaging Wl charging
[diskWriting
M bzb
[charging
W sms
M agenda
L= Aspects 2|
@ logging
L= CSL Aspects "l
<D billing (data)
D@ billing (event)
<D billing (time)
Y < T
Pmblems|]avadn(‘Declaration|ConsoIe (EI Properties 82 5 pEYSO
_Property | value
Advice
End invoking(Service, Port2, 'disconnect’, User)
Language billing
Start invoking(Service, Port, 'connect’, User)
Type time-based
——y] || [S RED

E |

B

Fig. 3. A composition that contains a concern-specific aspect

Figure 3 provides an example of a composition that contains such a con-
cern-specific aspect. The example is the same as the one in Figure 2, but the
logging aspect has been replaced by a concern-specific billing aspect.

The palette contains a library of templates for concern-specific aspects,
which may be instantiated by dragging them on the canvas. The palette
in the example contains three such templates, i.e., “billing (time)”, “billing
(event)” and “billing (data)”, which correspond to the three types of billing
that are identified above. Each Billing aspect has at least one placeholder,
which allows binding the implicit partner link that was mentioned above to a
concrete web service.

When a concern-specific aspect is selected in the editor view, its proper-
ties appear in the properties view. A time-based billing aspect, for example,
has five properties: “language”, “type”, “start”, “end”, and “advice”. The
first two properties simply show the language and the type of the aspect, re-
spectively. The other properties, however, can be changed in order to define
between which two points in the execution of the composition billing should
occur, and how this billing should be achieved. Based on this information,
most of the information for the corresponding Billing module (such as the one
in Listing 1) is generated by the SCE.

When the composition in the editor view is complete, any concern-specific
aspects are translated to Padus aspects, which are then applied to the appro-
priate services and/or composition templates similar to regular compositions.

11

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

5 Related Work

Several visual component composition environments already exist in the con-
text of component-based software development (CBSD). CBSD advocates
reusable and loosely-coupled components in order to realize flexible plug-
and-play component composition of off-the-shelf components [31]. The main
problem in CBSD is that wiring components together requires writing glue-
code manually in order to resolve syntactic and semantic incompatibilities.
A visual component composition environment allows to visually compose the
components and supports the (semi-)automatic generation of glue-code that
implements the composition. Current practice component composition en-
vironments, such as VisualAge for Java from IBM, JBuilder from Borland
and BeanBuilder from Sun already allow some form of automatic glue-code
generation from a given component composition. The main difference with
our approach, apart from the focus on components instead of web services, is
that they do not support a reusable encapsulation of composition logic. Fur-
thermore, there is no support for verifying whether a certain composition is
possible apart from syntactically checking messages and arguments. Another
disadvantage is that they do not support modularizing crosscutting concerns.

Documenting components with protocol documentation is already well in-
vestigated in literature. Campbell and Habermann [9] introduced the idea of
augmenting interface descriptions with sequence constraints already in 1974.
More recent work includes the Rapide system [21] or the PROCOL system [33].
In the research area of component based software development, several com-
ponent composition environments are available that lift the abstraction level
for component composition. Yellin and Strom [38], Reussner’s CoCoNut
project [27] and PacoSuite [37] for example also employ automata to document
components. PacoSuite is one of the most advanced component composition
environments and supports higher-level component composition based on se-
quence charts. The main advantage with respect to the other work on protocol
verification is that PacoSuite supports multi-party connectors, whereas other
approaches typically only support binary connectors. The PacoSuite approach
is, however, domain dependent, and is only targeted at the simple JavaBeans
component model.

BPMN is a graphical notation for specifying workflows, and aims to become
the de facto graphical standard similar to WS-BPEL for workflow languages.
BPMN allows for a higher-level graphical notation for processes in comparison
to WS-BPEL, and is in fact complementary to our approach. A BPMN-
based editor that is able to import/export WS-BPEL can for instance be used
to edit the specification of a composition template. As soon as there is a
standardized file format for BPMN, the SCE can also directly support BPMN
for the documentation of services and composition templates, instead of or
next to WS-BPEL.

Several approaches exist that focus on the construction of concern-specific

12

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

languages, also referred to as domain-specific languages. Note that these lan-
guages do not have facilities for encapsulating crosscutting concerns and are
hence not aspect languages. Such approaches provide environments for the
more efficient and scalable construction of languages fit to express concepts
from a particular domain. Examples are Draco [23]|, GenVoca [5], Babel [§]
and Intentional Programming [28].

Agarwal et al. [1] present a service creation environment based on end-to-
end composition of web services, but this environment does not allow visual
composition of web services nor separation of concerns using aspect-oriented
techniques.

6 Conclusions and Future Work

In this paper, we present a high-level service creation environment for compos-
ing web services. Our approach supports the modularization of crosscutting
concerns through Padus aspects. Padus aspects can be visually deployed onto
composition templates or services. Furthermore, support for concern-specific
languages on top of Padus is available.

On the abstraction scale we situate our SCE on the same level as BPMN
and the Padus language. The SCE is an advanced tool for configuring service
compositions and augmenting them with separated concerns, by means of
Padus aspects or higher-level concern-specific languages.

Our work is still in an early phase and as such several improvements are
possible:

* Our approach supports visually deploying aspects onto concrete services.
The pointcuts still have to be defined programmatically in Padus. Describ-
ing pointcuts at a higher level of abstraction would be an important con-
tribution to our work. We are experimenting with existing pointcut visual-
izations such as Theme/UML [11], Join Point Designation Diagrams [30,29]
and AOSF [22] to solve this problem.

e It is possible that an aspect adapts the external protocol of an existing
service (e.g., by adding an invocation) so that it becomes incompatible with
the composition template’s protocol. Currently, our tool is not able to
cope with this problem. In order to solve this, we are planning to include
the aspect protocol documentation and verification algorithms proposed by
composition adapters [34].

e The support for integrating concern-specific languages is currently quite
limited. Apart from a set of common tool (such as XML parsing and trans-
formation tools) and a simple visualization template, defining and imple-
menting a new concern-specific language still largely happens in an ad hoc
manner. A more in-depth solution based on existing work (such as Babel)
is subject to future work.

e The repository of available composition templates, services and aspects is

13

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

a custom solution and limited to local files. In the future, we plan to
investigate support for the industrial standard for discovery of web services
called UDDI [32].

Acknowledgments

This research is partly funded by Alcatel Belgium and the Institute for the
Promotion of Innovation Through Science and Technology in Flanders (IWT-
Vlaanderen) through the WIT-CASE project.

References

[1] Agarwal, V., K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal and
B. Srivastava, A service creation environment based on end to end composition
of web services, in: Proceedings of the 14th International World Wide Web
Conference (WWW 2005) (2005), pp. 128-137.

[2] Alonso, G., F. Casati, H. Kuno and V. Machiraju, editors, “Web Services:
Concepts, Architectures and Applications,” Springer-Verlag, Heidelberg,
Germany, 2004.

[3] Andrews, T., F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic and S. Weerawarana, Business
Process Ezecution Language for Web Services, version 1.1 (2003).

URL http://www.ibm.com/developerworks/library/ws-bpel/

[4] Arsanjani, A., B. Hailpern, J. Martin and P. Tarr, Web services: Promises and
compromises, Queue 1 (2003), pp. 48-58.

[5] Batory, D., V. Singhal, J. Thomas, S. Dasari, B. Geraci and M. Sirkin,
The GenVoca model of software-system generators, IEEE Software 11 (1994),
pp- 89-94.

[6] BPWS/J.
URL http://www.alphaworks.ibm.com/tech/bpws4d]

[7] Braem, M., K. Verlaenen, N. Joncheere, W. Vanderperren, R. Van Der Straeten,
E. Truyen, W. Joosen and V. Jonckers, Isolating process-level concerns using
Padus, in: Proceedings of the 4th International Conference on Business Process

Management (BPM 2006) (2006), (to appear).

[8] Brichau, J., “Integrative Composition of Program Generators,” Ph.D. thesis,
Programming Technology Lab (PROG), Vrije Universiteit Brussel, Brussels,
Belgium (2005).

[9] Campbell, R. and A. Habermann, The specification of process synchronisation
by path expressions, in: Proceedings of an International Symposium on Operating
Systems, 1974, pp. 89-102.

14

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.alphaworks.ibm.com/tech/bpws4j

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

[10] Charfi, A. and M. Mezini, Aspect-oriented web service composition with
AO4BPFEL, in: L.-J. Zhang, editor, Proceedings of the 2nd European Conference
on Web Services (ECOWS 2004) (2004), pp. 168-182.

[11] Clarke, S. and E. Baniassad, “Aspect-Oriented Analysis and Design — The
Theme Approach,” Addison-Wesley, 2005.

[12] Cottenier, T. and T. Elrad, Dynamic and decentralized service composition with
Contextual Aspect-Sensitive Services, in: Proceedings of the 1st International
Conference on Web Information Systems and Technologies (WEBIST 2005),
Miami, FL, USA, 2005, pp. 56-63.

[13] D’Hondt, M. and V. Jonckers, Hybrid aspects for weaving object-oriented
functionality and rule-based knowledge, in: K. Lieberherr, editor, Proc. 3rd Int’
Conf. on Aspect-Oriented Software Development (AOSD-2004) (2004), pp. 132—
140.

[14] Du, W. and A. Elmagarmid, Workflow management: State of the art vs. state
of the products, Technical Report HPL-97-90, Hewlett-Packard Labs, Palo Alto,
CA, USA (1997).

[15] The Eclipse platform.
URL http://www.eclipse.org/

[16] Fabry, J., “Modularizing Advanced Transaction Management — Tackling
Tangled Aspect Code,” Ph.D. thesis, Programming Technology Lab (PROG),
Vrije Universiteit Brussel, Brussels, Belgium (2005).

[17] Gybels, K. and J. Brichau, Arranging language features for pattern-based
crosscuts, in: M. Aksit, editor, Proc. 2nd Int” Conf. on Aspect-Oriented Software
Development (AOSD-2003) (2003), pp. 60-69.

[18] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold,
An overview of AspectJ, in: J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS
2072 (2001), pp. 327-353.

[19] Lopes, C. V., “D: A Language Framework for Distributed Programming,” Ph.D.
thesis, College of Computer Science, Northeastern University (1997).

[20] Lopes, C. V. and G. Kiczales, D: A language framework for distributed
programming, Technical Report SPL-97-010, Palo Alto Research Center (1997).

[21] Luckham, D., J. Kenney, L. Augustin, D. Vera, D. Bryan and W. Mann,
Specification and analysis of system architecture wusing Rapide, IEEE
Transactions on Software Engineering 21 (1995).

[22] Mahoney, M., A. Bader, T. Elrad and O. Aldawud, Using aspects to abstract and
modularize statecharts, in: O. Aldawud, G. Booch, J. Gray, J. Kienzle, D. Stein,
M. Kandé, F. Akkawi and T. Elrad, editors, The 5th Aspect-Oriented Modeling
Workshop In Conjunction with UML 200/, 2004.

15

http://www.eclipse.org/

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

[23] Neighbors, J. M., Draco: A method for engineering reusable software systems,
in: Software Reusability — Concepts and Models, ACM Press, New York, NY,
USA, 1989 pp. 295-319.

[24] Oracle BPEL Process Manager.
URL
http://www.oracle.com/technology/products/ias/bpel/index.html

[25] Ossher, H. and P. Tarr, Using subject-oriented programming to overcome
common problems in object-oriented software development/evolution, in: Proc.
21st Int’l Conf. Software Engineering (1999), pp. 687-688.

[26] Parnas, D. L., On the criteria to be used in decomposing systems into modules,
Comm. ACM 15 (1972), pp. 1053-1058.

[27] Reussner, R. H., Automatic component protocol adaptation with the CoCoNut
tool suite, Future Generation Computer Systems 19 (2003), pp. 627-639.

[28] Simonyi, C., The death of programming languages, the birth of intentional
programming, Technical report, Microsoft, Inc. (1995).

[29] Stein, D., S. Hanenberg and R. Unland, Query models, in: UML ’04: Proceedings
of the international conference on the Unified Modelling Language (2004), pp.
98-112.

[30] Stein, D., S. Hanenberg and R. Unland, Ezpressing different conceptual models
of join point selections in aspect-oriented design, in: AOSD ’06: Proceedings
of the 5th international conference on Aspect-oriented software development
(2006), pp. 15-26.

[31] Szyperski, C., “Component Software: Beyond Object-Oriented Programming,”
ACM Press and Addison-Wesley, New York, NY, USA, 1998.

[32] UDDLI.
URL http://www.uddi.org/

[33] van den Bos, J. and C. Laffra, PROCOL: A concurrent object-oriented language
with protocols delegation and constraints, Acta Informatica 28 (1991), pp. 511
538.

[34] Vanderperren, W., D. Suvee and V. Jonckers, Combining AOSD and CBSD in
PacoSuite through invasive composition adapters and JAsCo, in: Proceedings of
the Net.ObjectDays 2003 International Conference, 2004, pp. 35-50.

[35] Verheecke, B., W. Vanderperren and V. Jonckers, Unraveling crosscutting
concerns in web services middleware, IEEE Software 23 (2006), pp. 42-50.

[36] White, S. A., Business Process Modeling Notation (BPMN), version 1.0 (2004).
URL http://www.bpmn.org/

[37] Wydaeghe, B., “PacoSuite: Component Composition Based on Composition
Patterns and Usage Scenarios,” Ph.D. thesis, System & Software Engineering
Lab (SSEL), Vrije Universiteit Brussel, Brussels, Belgium (2001).

16

http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.uddi.org/
http://www.bpmn.org/

BRAEM, JONCHEERE, VANDERPERREN, VAN DER STRAETEN, JONCKERS

[38] Yellin, D. M. and R. E. Strom, Protocol specifications and component adaptors,
ACM Transactions on Programming Languages and Systems 19 (1997),
pp. 292-333.

17

	Introduction
	Motivation for the Service Creation Environment
	The Service Creation Environment
	Architecture of the SCE
	Aspects and Padus
	SCE GUI
	Composition
	Verification
	Code Generation and Deployment

	Concern-Specific Languages
	The Need for a Billing Language
	Definition of Billing
	Visualization of Billing

	Related Work
	Conclusions and Future Work
	References

