
Evaluating FuseJ as a Web Service Composition Language

Davy Suvée, Bruno De Fraine, Marı́a Agustina Cibrán,
Bart Verheecke, Niels Joncheere, and Wim Vanderperren

System and Software Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{dsuvee,bdefrain,mcibran,tw56218,njonchee,wvdperre}@vub.ac.be

Abstract

With the increasing popularity of web services, a num-
ber of technologies have emerged that target the integra-
tion and composition of web services as lightweight com-
ponents. However, a number of problems have been iden-
tified in these approaches, for example regarding an overly
static integration and lacking support for the modulariza-
tion of crosscutting concerns. In this paper, we evaluate
FuseJ, an architectural description language for unifying
aspects and components, as an approach for the composi-
tion of web services. We outline how FuseJ can be used
to this end and present an evaluation that compares FuseJ
to four other web service composition approaches accord-
ing to criteria such as the organization and flexibility of the
composition and the support for Aspect-Oriented Software
Development (AOSD). Although FuseJ does not allow de-
scribing complete business processes, we find that it excels
at selective and dynamic composition and that it supports
advanced separation of concerns without the need to intro-
duce additional constructs.

1. Introduction

Web services [1] are a recent application technology
based on open standards defined by the World Wide Web
Consortium. They enable a number of application com-
ponents to interoperate in a platform- and language-neutral
fashion. Contrarily to what their name suggests, web ser-
vices are not limited to services offered via the World Wide
Web. They are also regarded as a new light-weight com-
ponent model suited for Component-Based Software De-
velopment (CBSD) [18, 19]. The web services technology
even improves on current component models: as its com-
munication protocol is entirely standardized, it allows for
the seamless integration of components running on middle-
ware platforms of different vendors.

Although web services are a relatively new technology,
they are increasingly popular and a large number of sup-
porting technologies exists that enable the development of
service-oriented applications. Some shortcomings can how-
ever be identified in the approaches that are typically used
to compose web services. As references to the interfaces
of the used web services are hard-coded in the client appli-
cations, the integration does not explicitly support the dy-
namic reconfiguration of which specific web services are
used. This significantly complicates adapting the applica-
tion to changes in the set of available services in the busi-
ness environment. As such, the maintainability of applica-
tions using web services is compromised [3, 13].

Another shortcoming is that some approaches do not ac-
commodate for the specific needs of web services in terms
of management (e.g. services can be asynchronous or latent,
can become unavailable due to unpredictable network con-
ditions, etc). To address this issue for several services, code
has to be repeated and scattered throughout the application,
which renders the development and maintenance of the ap-
plication more difficult. More generally, it can be said that
there is little or no support for the modularization of cross-
cutting concerns such as management. Aspect-Oriented
Software Development (AOSD) [12] appears as a solution
for the modularization of such crosscutting concerns. Previ-
ous research has shown that the combination of AOSD and
web services has significant benefits [3, 20, 4, 21].

In this paper, we aim at resolving these problems by
offering a complementary solution from a different con-
text. We evaluate FuseJ, an architectural description lan-
guage that aims at unifying aspects and components, as an
approach for the composition of web services. Although
we note that FuseJ was not conceived with web services
in mind, we claim that it has a number of properties that
make it well suited for this task. More specifically, FuseJ
features decentralized and dynamic connections that can
flexibly model web service compositions. These connec-
tions seamlessly combine regular and aspect-oriented inter-

mailto:dsuvee@vub.ac.be
mailto:bdefrain@vub.ac.be
mailto:mcibran@vub.ac.be
mailto:tw56218@vub.ac.be
mailto:njonchee@vub.ac.be
mailto:wvdperre@vub.ac.be


actions and offer advanced selection mechanisms.

The outline of this paper is as follows. The next sec-
tion presents the general FuseJ approach for unifying as-
pects and components by introducing a detailed case study.
Section 3 then evaluates FuseJ as an approach for the com-
position of web services and compares it to four other web
service composition approaches. Finally, section 4 wraps
up the paper by presenting conclusions and discussing fu-
ture work.

2. The FuseJ Approach

Nowadays, a wide range of technologies is available
that aim at integrating aspect-oriented concepts into a
component-based context [15, 9, 11, 8, 17]. All ap-
proaches introduce new programming languages or frame-
works for modularizing crosscutting concerns: aspects are
either specified in a dedicated language or are required to
implement a particular set of aspect-interfaces. Hence, as-
pects are considered, treated and implemented as a differ-
ent kind of entity. However, the behavior implemented by
aspects is not that different from ordinary component be-
havior. Both implement some functionality required within
the application and only the way in which they interact
with other software entities differs. The introduction of
a separate aspect construct however, has several disadvan-
tages. Firstly, the crosscutting composition mechanism of
an aspect module is tangled with the behavior of the cross-
cutting concern, inherently ruling out other ways of inte-
grating its behavior within the application. Secondly, it
limits the reusability and applicability of existing compo-
nents. Instead of introducing a specialized aspect module,
we propose to apply aspect-oriented composition mecha-
nisms upon existing module constructs [16]. As such, in-
dependently specified components can be deployed in both
a regular and an aspect-oriented fashion, achieving a seam-
less integration between aspects and components.

As a concrete case study to introduce and validate
this symmetric AOP approach, called FuseJ, we present
an online hotel/apartment booking system, which incor-
porates four basic components: a booking compo-
nent, a payment component, an SMS component and a
discount component. The booking component offers the
required functionalities to reserve hotel rooms and apart-
ments. When a customer confirms a reservation, he/she is
billed accordingly. Two additional functional requirements
are specified: (1) when a customer confirms a reservation,
he/she is notified by an SMS-message and (2) when a hotel
room is booked during the Christmas holidays, a discount
of 10 percent is attributed on the specified room/apartment
rate.

2.1. FuseJ Component Model

In order to achieve a seamless integration between as-
pects and components, FuseJ employs a component model
based on provided-expected interfaces. Its main objective is
to keep coupling amongst components as low as possible,
hence achieving maximum reusability and reconfigurabil-
ity. To this end, FuseJ proposes the concept of a service
specification. A service specification defines the set of op-
erations (i.e. methods) components should provide and enu-
merates the set of operations that implementing components
expect to be offered by the environment. The provided and
expected operations of a service specification are described
in terms of regular Java interfaces, making it straightfor-
ward to integrate and reuse existing component interfaces
within the FuseJ approach.

Listing 1 illustrates the BookingService specifica-
tion (lines 15-18). Components that implement this service
specification are required to provide an implementation for
both the BookHotel (lines 1-4) and BookApartment
(lines 6-9) interfaces, while at the same time these com-
ponents can employ the operations described by the
ChargeCustomer (lines 11-13) interface within their in-
ternal implementation. Together, the provided interfaces
make up the publicly accessible interface of the component,
providing operations that can be employed by other compo-
nents within the application. The expected interfaces on the
other hand, describe the set of interaction points that need
to be connected with provided operations offered by other
components. As the interfaces themselves are not prede-
fined to be either provided or expected, they can be em-
ployed and reused interchangeably: an interface can play
the provided role in one service specification, while at the
same time play the expected role in another one.

Listing 2 illustrates a component that imple-
ments this BookingService specification. The
BookingComponent provides an implementation for
all operations described in both the BookHotel (lines
6-17) and BookApartment (lines 19-30) interfaces.
When a customer confirms a reservation, he/she should
be billed. The charging of the customer is performed
through calling the chargeAmount operation (line 10,
line 23) defined within the ChargeCustomer interface.
All operations, which are part of the expected interfaces
of a component, can be transparently invoked from within
the implementation. Hence, the entire implementation
of a concrete component is implemented in terms of its
own service specification, this way minimizing coupling
with other concrete interfaces and components. The
FuseJ execution environment ensures that at run-time,
the appropriate component behavior is executed for ex-
pected operations, depending on the concrete component
operations they are connected to. Remember that two



1 interface BookHotel {
2 boolean bookHotel(String hotelName, int numberOfNights);
3 int computeHotelPrice(String hotelName, int numberOfNights);
4 }
5

6 interface BookApartment {
7 boolean bookApartment(String apartmentName, int numberOfDays);
8 int computApartmentPrice(String apartmentName, int numberOfDays);
9 }

10

11 interface ChargeCustomer {
12 void chargeAmount(int amount);
13 }
14

15 service BookingService {
16 provides BookHotel, BookApartment;
17 expects ChargeCustomer;
18 }

Listing 1. The BookingService specification

1 class BookingComponent implements BookingService {
2

3 HotelPriceDb hotel_database = new HotelPriceDb();
4 ApartmentPriceDb apartment_database = new ApartmentPriceDb();
5

6 public boolean bookHotel(String hotelName, int numberOfNights) {
7 // Some management code should come here ...
8 // Compute the price for this hotel
9 int price = computeHotelPrice(hotelName, numberOfNights);

10 chargeAmount(price);
11 return true;
12 }
13

14 public int computeHotelPrice(String hotelName, int numberOfNights) {
15 int rate = hotel_database.getPrice(hotelName);
16 return rate * numberOfNights;
17 }
18

19 public boolean bookApartment(String apartmentName, int numberOfDays) {
20 // Some management code should come here ...
21 // Compute the price for this apartment
22 int price = computeApartmentPrice(apartmentName, numberOfDays);
23 chargeAmount(price);
24 return true;
25 }
26

27 public int computeApartmentPrice(String apartmentName, int numberOfDays) {
28 int rate = apartment_database.getPrice(apartmentName);
29 return rate * numberOfDays;
30 }
31

32 }

Listing 2. BookingComponent implementing the BookingService specification



other functional requirements are defined: customers are
notified through an SMS message when they confirm their
booking and customers are attributed a discount when
they book a hotel room during the Christmas holidays.
These functionalities are not implemented at the level of
the BookingComponent, as their implementation would
crosscut its base functionality. These so-called aspects,
or more concretely, these aspect-oriented interactions, are
modeled at the FuseJ component composition level, de-
scribed in detail in the next section, which provides support
for both regular as well as aspect-oriented interactions
amongst components.

Listing 3 provides an overview of the other set of inter-
faces and components employed throughout the rest of the
case study. The DiscountComponent (lines 13-19) il-
lustrates an example of a component that does not employ
expected interfaces, as it is able to execute its tasks all by
itself, this way reaching maximum cohesion. In that case, a
component can implement its providing interfaces directly,
similar to a Java class implementing a set of regular inter-
faces, omitting the description of a service specification. Its
implemented interfaces are then implicitly combined into a
service specification, which does not contain any expected
interface declarations.

The next section describes how independently specified
components are composed into a single application by mak-
ing use of the FuseJ component composition language.

2.2. FuseJ Component Composition Language

Once service specifications and components have been
described and implemented, their operations are combined
in order to build up an application. For describing this com-
ponent composition process, FuseJ makes use of an explicit
connector construct, a concept borrowed from architecture
systems [10]. A connector acts as a kind of mediator, which
prescribes how two or more components should interact by
linking their provided and expected interfaces. In general, a
FuseJ connector is built up out of four individual parts:

• A target role, which enumerates the set of provided
operations that should be executed, augmented with
component selectors.

• A source role, which enumerates the set of provided/-
expected operations that trigger the interaction, aug-
mented with component selectors.

• An optional property mapping, which enumerates the
set of property mappings, described in terms of source,
target and external operations.

• An optional condition specification, which enumer-
ates the set of preconditions, described in terms of
source, target and external operations.

As described early on in this paper, the goal of FuseJ is to
achieve a seamless integration between AOSD and CBSD.
As FuseJ implements both aspects and components as ba-
sic components, the distinction between both, namely the
way in which their interaction takes place, emerges at the
connector level. In its most basic form, a FuseJ connec-
tor interconnects two operations. This connection can take
place on three levels: the component level, the service spec-
ification level or the interface level. Depending on the level
that is employed within the connector, a greater degree of
flexibility and reuse is achieved.

Listing 4 illustrates a connector, which enables a
regular, component-based interaction that connects ex-
pected with provided operations. The purpose of this
BookingPayment connector is to charge a customer’s
credit card when he/she gets billed for booking a hotel
room or apartment. For this, the chargeCreditCard
operation acts as target role (lines 3-4) and is connected
with the chargeAmount operation that acts as source
role (lines 5-6). The chargeAmount operation is de-
clared at the component level. As a result, this interaction
takes place when the chargeAmount operation is called
within the BookingComponent implementation. The
chargeCreditCard operation is declared at the ser-
vice specification level, namely CreditCardPayment.
Hence, this operation does not refer to a concrete compo-
nent type and the FuseJ run-time execution environment
is responsible for picking the most appropriate component,
which implements this service specification, to handle this
operation request. A connector also describes how oper-
ation properties (i.e. input parameters and output values)
are matched. This mapping of properties takes place by
means of a where-clause. All operation properties em-
ployed within the source and target roles are attributed a
unique identifier. When these specified identifiers match in
both source and target role, they are automatically reified.
When this is not the case, the where-clause is able to de-
clare how a mapping takes place. In this particular case,
the amount property of both the chargeCreditCard
and chargeAmount operation is automatically reified:
the value that is given as input for the chargeAmount
operation, is given as input for the chargeCreditCard
operation. The cardnumber property has no equivalent
within other employed operations and is therefore set on
012-34567-891. Hence, whenever the customer books a ho-
tel through the BookingComponent, he/she is automati-
cally billed by the most appropriate component that imple-
ments the CreditCardPayment service specification.

Next to describing component-based interactions, the
FuseJ connector language is also able to specify crosscut-

1The number of the customer’s credit card could be retrieved by exe-
cuting some external operation. This is omitted in the case study to keep
the example easy and straightforward to understand.



1 interface CreditCardPayement {
2 int chargeCreditCard(int amount, String cardNumber);
3 }
4

5 interface Sms {
6 void sendSms(String number, String message);
7 }
8

9 interface Discount {
10 int applyDiscount(int price, int percent);
11 }
12

13 class DiscountComponent implements Discount {
14

15 int applyDiscount(int price, int percent) {
16 return (price - ((price*percent)/100));
17 }
18

19 }

Listing 3. Remaining set of interfaces and components employed within the case-study

1 connector BookingPayment {
2

3 connect:
4 CreditCardPayment.chargeCreditCard(int amount, String cardNumber);
5 for:
6 BookingComponent.BookingService.ChargeCustomer.chargeAmount(int amount);
7 where:
8 cardnumber = "012-34567-89";
9

10 }

Listing 4. Connector for billing a customer when he/she books a hotel room or apartment

1 connector BookingSms {
2

3 connect:
4 SmsService.sendSms(string number, string message) &&
5 host("www.sms-webservice.com") && select("price", "MIN");
6 after:
7 BookingService.Book*.book*(*);
8 where:
9 message = "Booked";

10 number = "0123456789";
11

12 }

Listing 5. Connector for sending the customer an SMS-message when he/she confirms a booking



ting interactions, this by declaring the connection type as
being crosscutting. At the moment, three kinds of cross-
cutting interactions are supported, namely before, after and
around returning. The before and after interactions allow
to trigger the behavior of an additional operation before or
after the execution of some other operation. The around re-
turning interaction allows to change the return value of an
operation after it has been executed.

Listing 5 illustrates a connector that specifies a cross-
cutting after interaction. This connector makes sure that
an SMS-message is sent to the customer when he/she con-
firms a booking. Similar to a component-based interaction,
two operations are again connected, this time through the
after interconnection type. The sendSMS operation is de-
clared at the interface level, while the source role operation
is declared at the service specification level. Hence, all con-
crete components that implement this interface and service
specification are taken into consideration by this connec-
tor. The after-clause (lines 6-7) makes use of quantifica-
tion: it specifies that those operations declared within the
BookingService specifications are considered whose
name starts with book and which are part of an interface
whose name starts with Book. This kind of quantification
allows describing a precise set of operations, without hav-
ing to enumerate those operations one by one. The target
role (lines 3-5) illustrates how the context of an operation
is described and/or delimited. For this, selectors are em-
ployed that declaratively specify the conditions a compo-
nent should meet in order to be considered. The built-in
host selector employs the distributed nature of the FuseJ
run-time execution environment by defining a remote lo-
cation for components. In this case, all components that
implement the SmsService specification and which are
on the remote location www.sms-webservice.com, are taken
into consideration. Another selector declares that the cheap-
est component is preferred. This kind of requirements are
specified by making use of the select keyword, which
handles custom non-functional properties. For each such
property, a dedicated handler is implemented as a FuseJ
language plug-in, which is then employed for evaluating
the corresponding select expression (“price” in this case).
Hence, this allows to easily extend the FuseJ language to
take into account custom selection criteria.

Listing 6 finally, illustrates a connector that enables an
aspect-oriented interaction of type around returning. This
connector makes sure that the applyDiscount opera-
tion (lines 3-4) of the DiscountComponent is wrapped
around the execution of the computeHotelPrice op-
eration (lines 5-7), hence returning a new value, namely
the discounted price. For this, the original return value
of the computeHotelPrice operation is captured using
the returns selector. This connector also illustrates how
additional preconditions can be specified by using a when-

clause. Here, one or more operation executions can be com-
bined using boolean operators. Only when this expression
evaluates to true, the specified interaction is triggered.

This section only introduces a subset of the various ex-
pressive composition language features FuseJ has to offer.
Amongst others, FuseJ also provides support for the typi-
cal aspect-oriented pointcuts such as cflow, which are again
specified as built-in selectors.

2.3. FuseJ Run-Time Execution Environment

In order to deploy applications that have been devel-
oped employing the FuseJ component model and compo-
sition language, a container-based run-time execution envi-
ronment is proposed, that enables both regular and aspect-
oriented interactions amongst components. Each compo-
nent is deployed in a dedicated container that automatically
exposes the provided and expected component operations.
This generated container acts as a wrapper, inherently ruling
out unsolicited interactions. The exposed operations con-
tain a run-time mechanism for the dynamic attachment and
detachment of interactions. When a connector is deployed
within the execution environment, a FuseJ component that
manages the specified interaction and selection process is
automatically generated and attached at the containers of
the involved components, even if these containers are situ-
ated on a remote FuseJ-enabled location. Connectors can be
dynamically added, changed and removed and are as such
able to influence the interactional behavior between the in-
volved components at run-time. For a more elaborate ex-
planation about the run-time execution environment, the in-
terested reader is referred to [16].

3. Evaluation

The FuseJ language was originally not conceived as a
web service composition language, but in our opinion it has
some features that contribute to web service composition
as well. Therefore, we evaluate the FuseJ language as a
web service composition language and compare it to the fol-
lowing existing composition approaches: WS-BPEL [2] as
the established approach and AO4BPEL [4], CASS [7] and
WSML [20] as advanced, AOP-enabled, but less mature ap-
proaches. The following paragraphs shortly introduce these
approaches, and the evaluation will be carried out by dis-
cussing a number of criteria in the next sections. Table 1
provides a summarizing overview of the results of the eval-
uation.

WS-BPEL (Web Services Business Process Execution
Language) is a service choreography and orchestration lan-
guage that allows the definition of sophisticated web ser-
vice compositions. It is a process-based language as it de-
scribes business processes as interactions between web ser-



1 connector BookingDiscount {
2

3 connect:
4 DiscountComponent.Discount.applyDiscount(int price, int percent);
5 around returning:
6 BookingComponent.BookingService.BookHotel.computeHotelPrice(String, int) &&
7 returns(int price);
8 where:
9 percent = 10;

10 when:
11 TimeComponent.Timing.isChristmas();
12

13 }

Listing 6. Connector that attributes a discount when a hotel room is booked during the Christmas
holiday

vices. AO4BPEL is an aspect-oriented extension to WS-
BPEL that allows for more modular and dynamically adapt-
able web service compositions. AO4BPEL extends WS-
BPEL with the aspect, pointcut and advice concepts.

Contextual Aspect-Sensitive Services (CASS) is a dis-
tributed aspect platform that targets the encapsulation of co-
ordination, activity life cycle and context propagation con-
cerns in service-oriented environments. CASS advocates
the decomposition of applications into a set of collaboration
layers, next to the well-known class, component or service-
based decomposition. In a CASS-enabled service oriented
architecture, a collaboration layer captures the protocols all
services should implement to fulfill an interaction. CASS
aspects factor out the crosscutting concerns that arise when
services are combined into distinct collaboration layers.

The Web Services Management Layer (WSML) is an
AOP-enabled framework for the client-side integration,
composition, selection and management of web services.
The WSML acts as a mediator between the client appli-
cation and the world of web services. Its primary goal is
to separate any service-related code from the client appli-
cation to achieve a better separation of concerns. Its sec-
ondary goal is to offer dynamic adaptability for the con-
stantly changing service- and network environment. The
WSML is implemented on top of the JAsCo [17] dynamic
AOP language.

3.1. Seamless AOP

In FuseJ, a web service can be composed with another
web service in an aspectual way, i.e. triggered as an ad-
vice, whereas the same functionality can also be integrated
in a third web service in a non-aspectual way. We say that
FuseJ supports seamless AOP, as services do not need to
explicitly declare at service development time whether they
are meant to be used as aspects. As such, every web ser-

vice can eventually be used in an aspectual way, if they are
composed accordingly. FuseJ uses the concepts of connec-
tors and components, which are well known in the world of
component-based software development, and does not need
to introduce a different aspect concept to deal with cross-
cutting concerns.

WS-BPEL on the contrary, does not tackle the descrip-
tion of crosscutting concerns in a modularized way. As a
consequence, these concerns appear tangled with the spec-
ification of the main composition. AO4BPEL improves on
WS-BPEL and adds explicit and general support for the
modularization of crosscutting concerns, which are encap-
sulated and defined in terms of typical aspect constructs.
Contrary to FuseJ, web services cannot be seamlessly used
as advices and an additional aspect construct is required.
The price paid by FuseJ is a more limited AOP expressive-
ness: it cannot support a general around advice concept
as AO4BPEL does, because this implies that the service is
aware that it is used as advice.

The WSML relies on the lower level aspect language
JAsCo, which does introduce an explicit aspect construct.
However, in the ideal case, the user of the WSML is not ex-
posed to the complexity of AOP as built-in domain specific
languages, based on XML, are available for specific con-
cerns. CASS does not offer seamless AOP as the concept of
aspects is explicitly present in the programming language.

3.2. Explicit Support for Process Descriptions

Composing web services has two main viewpoints: or-
chestration and choreography. The choreography viewpoint
covers the perspective of a collaboration between several
services that realizes a value chain. It describes the interac-
tions between service providers. The orchestration view-
point describes the behavior that a service provider per-
forms internally within a collaboration.



FuseJ WS-BPEL AO4BPEL CASS WSML
Seamless AOP + - +- +- +-

Explicit process description support - + + + -
Reusable composition +- +- +- n/a +-
Selective composition + - +- + +
Dynamic composition + - +- + +
Automatic discovery + - - - +

Compatibility requirements +- + + +- +-

Table 1. Overview of the comparison of the evaluated web service composition approaches

FuseJ is not a dedicated process description language.
FuseJ connectors are used to interconnect a set of web ser-
vices. The specification of the process is spread over these
connectors and possibly higher-level components. This
way, a decentralized composition is deployed. Therefore,
FuseJ is proposed as a lower-level composition approach. It
does not offer explicit support to maintain state across com-
ponents or to manage activity contexts, exceptions, transac-
tional integrity, load balancing, etc. WS-BPEL on the other
hand is a dedicated language for specifying business pro-
cess behavior based on web services and is suited for both
orchestration and choreography.

WSML is, similar to FuseJ, not targeted at describing
process descriptions. Compositions can be specified as a
series of higher-level statements or in Java/JAsCo code and
are deployed as first-class entities. In the WSML, a hierar-
chical composition, possibly specified using several layers
of abstraction, is deployed in a centralized fashion.

CASS is suited for decentralized choreography and tar-
gets specifically the encapsulation of coordination, activity
life cycle and context propagation concerns for web ser-
vices. Similar to FuseJ, CASS does not use a centralized
engine to coordinate message exchanges. Instead, coordi-
nation logic is integrated directly at the level of the message
handlers of each individual web service.

3.3. Reusable Composition

FuseJ connectors refer to interfaces instead of concrete
services, which allows reusing them. In addition, a con-
nector encapsulates the deployment information of the em-
ployed services, this way avoiding to spread this informa-
tion all over the composition.

WS-BPEL and AO4BPEL are process-based languages,
and thus compositions are written as processes. In both ap-
proaches, compositions can refer to partner roles that are
to be deployed on concrete services. Thus, compositions
can be reused at deployment time for different services that
comply with the partner roles. Glue code for data adaptabil-
ity (adaptation of the interfaces of the composed web ser-
vices), on the contrary, is not localized but scattered all over

the composition, with negative effects on reusability. In the
WSML, the compositions are reusable since they can be
specified without referencing to concrete service interfaces.
CASS aims at providing reusable compositions. However,
it is not clear how this goal is currently achieved.

3.4. Selective Composition

An important property in the volatile web services world
is whether the selection of web services is not hard coded,
but might change depending on business-specific proper-
ties. FuseJ supports selective composition on two different
levels:

1. The target and source roles are able to contain selec-
tors that limit the number of matching services. For
example, a service might not be chosen if it is located
on a different continent than the source service. These
selectors have a declarative nature, can be user-defined
and are completely dynamic, i.e. they are re-evaluated
for every request2.

2. The conditional specification allows to describe an ad-
ditional triggering condition using a Java expression or
by invoking another service. As such, in cases where
the declarative nature of the selectors is not very well
suited, the full expressiveness of Java can be exploited.

WS-BPEL does not explicitly support selective compo-
sition, although it can be modeled as part of the process de-
scription. However, these kinds of business rules that guide
the decision of which service to invoke (e.g. depending on
their average speed) have been identified as being crosscut-
ting [6]. As such, the selection logic appears tangled and/or
scattered among the process specification and thus seriously
hampers maintainability of both the basic process and the
service selection logic. In FuseJ, the selection engine takes
care of the concrete decision process based on the declara-
tive selector specification. When using BPEL, an instanti-
ation of such an engine (i.e. the selection decision making

2This might sound very inefficient, but we expect that smart caching
strategies are able to reduce the overhead significantly.



process) has to be included as part of the process description
leading to a tangled and thus less readable and maintainable
process description.

AO4BPEL allows tackling this by encapsulating these
business rules as modularized aspects. However, in
AO4BPEL the rules have to be programmed at a lower level
in comparison to FuseJ. The declarative nature of the FuseJ
selectors allows for a more concise selection description and
enables possible optimizations by the FuseJ run-time sys-
tem by e.g. caching resulting requests for given input prop-
erties.

WSML offers support for selection policies that govern
the web service selection process. Selection policies speci-
fying selection criteria on non-functional properties can be
described declaratively in a domain-specific language and
are automatically translated to JAsCo code. FuseJ however
integrates the complete selective composition logic in one
uniform connector language. Similar to WSML, CASS also
supports a system based on selection policies. However,
these policies can only rely on anticipated data available in
the local message context.

3.5. Dynamic Composition

Selective composition allows choosing between several
alternatives for a certain request based on predefined con-
ditions. In the context of Web Services, this might not be
enough, as not all possible conditions can be foreseen at
deployment time. FuseJ is fully dynamic: it is possible to
add, alter and remove connectors while the system is run-
ning. Connectors themselves are also highly dynamic since
the selectors and condition specification are re-evaluated for
each request.

In WS-BPEL, complex dynamic modifications that
might involve semantic changes are not possible. When
a WS-BPEL process is deployed, the WSDL descriptions
of all the services participating in the composition must be
known and once a process has been deployed, there is no
way to change it dynamically. Furthermore, because of the
centralized setup, it would be very difficult to alter specific
parts of a WS-BPEL specification dynamically without af-
fecting the complete composition. FuseJ is however orga-
nized decentrally and therefore other interactions are not af-
fected when a connector specification is altered or removed.

AO4BPEL allows attaching and removing aspects dy-
namically, so the aspect logic itself might be altered during
run-time. The basic WS-BPEL workflow description can-
not be straightforwardly influenced during run-time. How-
ever, technically AO4BPEL is able to alter the basic WS-
BPEL workflow description dynamically by patching it us-
ing aspects. However, this abuses the aspect expressiveness
for concerns that are not necessarily crosscutting. As such,
an aspect is not used for capturing a specific crosscutting

concern, but merely to patch certain places in the process
description to do something else than originally intended.
When applying this technique over and over again during
the lifetime of the product, the control flow and modulariza-
tion of the system will be completely cluttered with patch-
ing aspects. The end result will be a system with a poor
modularization and thus less understandable and maintain-
able. This is in clear contrast with the original motivation
for AOSD, namely better separation of concerns.

Both CASS and WSML offer support for dynamic inte-
gration and composition of web services through redirec-
tion aspects. WSML is able to deploy compositions with
a variable set of partners that can be swapped at runtime.
CASS proposes to use redirection aspects to implement
load balancing and fault tolerance algorithms, although the
mechanism can also be used to dynamically change a se-
lected service. While WSML and CASS are framework-
based approaches, FuseJ on the contrary introduces explicit
declarative language support for capturing dynamism of the
selective composition.

3.6. Automatic Discovery

Web service composition approaches in which web ser-
vices are hard-wired in the clients can easily lead to un-
manageable applications that cannot adapt to changes in the
business environment. Therefore, one of the goals of web
service technology is the automatic discovery of web ser-
vices [5]. FuseJ aims to support such automatic discovery
by referring to interfaces instead of concrete web services
in a connector specification. At run-time, the concrete web
services that match these interfaces can be looked up auto-
matically by the FuseJ run-time environment, thus achiev-
ing a high decoupling with concrete web services. Such a
look-up can be achieved by using UDDI as a registry for
concrete web services.

WS-BPEL, AO4BPEL and CASS do not explicitly sup-
port the automatic discovery of web services, although an
extended engine could support it. Hence, they could in prac-
tice offer more or less the same functionality as FuseJ re-
garding automatic discovery. The WSML uses the OWL-S
language [14] to define a domain ontology for web services
and as such allows to verify compatibility of web services
on a semantic level [5]. As such, the WSML improves on
FuseJ in the sense that it not only considers the concrete in-
terfaces and non-functional properties, but also the seman-
tic description of web services, which is required for full-
fledged automatic discovery. As a requirement however,
web services have to be documented in OWL-S in order to
be employed in such a scheme.



3.7. Compatibility Requirements

Some approaches for web service composition impose
specific requirements on the web services they can handle,
for example by requiring these services to implement a spe-
cial model or to be implemented in a dedicated language.
Web services that do not satisfy these composition ap-
proaches’ compatibility requirements cannot be composed
using these approaches. Other approaches do not impose
such requirements: there, web services can be used as is.
In FuseJ, services need to be FuseJ-aware (i.e. deployed on
a FuseJ platform and documented using service interfaces)
in order to exploit the full power of FuseJ. When a service
does not specify a service interface, it is seen as a service
with an implicit provided interface, and can thus only be in-
voked. It is also impossible to apply AO interactions (e.g. to
intercept join points) on web services that are not deployed
on a FuseJ platform.

In WS-BPEL and AO4BPEL, services do not need to be
aware of the fact that they are being used in a composi-
tion. Consequently, they do not impose any compatibility
requirements on the web services they can handle. In order
to allow automatic service discovery, the WSML requires
documenting every web service using OWL-S. Similar to
FuseJ, CASS requires services to be deployed on a CASS-
aware platform in order to allow AO interactions.

4. Conclusions and Future Work

In this paper, we present the FuseJ architectural descrip-
tion language and evaluate its applicability as a web ser-
vice composition language by comparing it to existing ap-
proaches. We identify that FuseJ excels at supporting se-
lective and dynamic composition because of the declara-
tive nature of its language. Furthermore, FuseJ does not
need to introduce additional constructs (apart from the ex-
isting component and connector Architectural Description
Language constructs) for supporting advanced separation of
concerns through AOSD. However, FuseJ requires web ser-
vices to be FuseJ-aware to exploit its full expressive power.
In addition, the FuseJ composition language is only able
to provide connectivity (although with advanced features),
while approaches like BPEL allow describing a full central-
ized view of the business process.

In order to solve the latter limitation, we plan to investi-
gate the combination of BPEL and FuseJ. Here, BPEL can
be used for describing the processes in an abstract, reusable
manner while the FuseJ composition language is employed
to connect abstract roles with concrete components. As
FuseJ was not developed with web services in mind, we did
not take the existing web services standards, such as WSDL,
into account. In order to make FuseJ more appropriate for
the web services world, we plan for instance to incorpo-

rate the WSDL standard into FuseJ, either by extending the
WSDL language with FuseJ concepts or by providing an au-
tomatic translation process for FuseJ service specifications
towards WSDL descriptions.

Acknowledgments

Davy Suvée and Bruno De Fraine are supported by a
doctoral scholarship from the Institute for the promotion of
Innovation by Science and Technology in Flanders in the
Industry (IWT). Wim Vanderperren is supported by a post-
doctoral fellowship from the Flemish Funds for Scientific
Research (FWO).

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices - Concepts, Architectures and Applications. Springer
Verslag, 2004.

[2] T. Andrews et al. Business process execution language
for web services specification, version 1.1, May 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.

[3] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr. Web
services: Promises and compromises. Queue, 1(1):48–58,
2003.

[4] A. Charfi and M. Mezini. Aspect-oriented web service com-
position with AO4BPEL. In In Proc. of the European Con-
ference on Web Services ECOWS 2004, LNCS 3250, Erfurt,
Germany, Sept. 2004.

[5] M. Cibrán, B. Verheecke, D. Suvée, W. Vanderperren, and
V. Jonckers. Automatic service discovery and integration
using semantic descriptions in the web services management
layer. In Proceedings of the 3rd Nordic Conference on Web
Services, Växjö, Sweden, Nov. 2004.

[6] M. A. Cibrán and B. Verheecke. Aspect-oriented program-
ming for dynamic web service monitoring and selection.
In In Proc. of the European Conference on Web Services
ECOWS 2004, LNCS 3250, Erfurt, Germany, Sept. 2004.

[7] T. Cottenier and T. Elrad. Dynamic and decentralized ser-
vice composition with contextual aspect-sensitive services.
In In the proceedings of the First International Confer-
ence on Web Information Systems and Technologies, Miami,
USA, May 2005.

[8] R. Douence, O. Motelet, and M. Südholt. A formal defini-
tion of crosscuts. In Yonezawa and Matsuoka [22], pages
170–186.

[9] R. E. Filman. Applying aspect-oriented programming to in-
telligent synthesis. In C. Lopes, L. Bergmans, M. D’Hondt,
and P. Tarr, editors, Workshop on Aspects and Dimensions of
Concerns (ECOOP 2000), June 2000.

[10] D. Garlan and M. Shaw. An introduction to software archi-
tecture. Advances in Software Engineering and Knowledge
Engineering, 1:1–40, 1994.

[11] JBOSS Group. JBoss/AOP website, 2005.
http://www.jboss.org.



[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka, editors, 11th Eu-
ropeen Conf. Object-Oriented Programming, volume 1241
of LNCS, pages 220–242. Springer Verlag, 1997.

[13] J. Malhotra. Challenges in developing web services-based
e-business applications. Whitepaper, interKeel Inc., 2001.

[14] The OWL Services Coalition. OWL-S 1.0 Release, 2003.
http://www.daml.org/services/owl-s/1.0/.

[15] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC:
A flexible solution for aspect-oriented programming in Java.
In Yonezawa and Matsuoka [22], pages 1–24.

[16] D. Suvée, B. De Fraine, and W. Vanderperren. FuseJ:
An architectural description language for unifying aspects
and components. In L. Bergmans, K. Gybels, P. Tarr, and
E. Ernst, editors, Software Engineering Properties of Lan-
guages and Aspect Technologies, Mar. 2005.

[17] D. Suvée and W. Vanderperren. JAsCo: An aspect-oriented
approach tailored for component based software develop-
ment. In M. Akşit, editor, Proc. 2nd Int’ Conf. on Aspect-
Oriented Software Development (AOSD-2003), pages 21–
29. ACM Press, Mar. 2003.

[18] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison Wesley, Reading, Mas-
sachusetts, USA, 1st edition, 1998.

[19] C. Szyperski. Components and web services. Software De-
velopment, Aug. 2001.

[20] B. Verheecke, M. A. Cibrán, W. Vanderperren, D. Suvé, and
V. Jonckers. AOP for dynamic configuration and manage-
ment of web services in client-applications. International
Journal of Web Services Research, 1(3):25–41, 2004.

[21] D. Verspecht, W. Vanderperren, D. Suvée, and V. Jonckers.
Jasco.net: Unravelling crosscutting concerns in .net web ser-
vices. In Proceedings of the 2nd Nordic Conference on Web
Services, Växjö, Sweden, Nov. 2003.

[22] A. Yonezawa and S. Matsuoka, editors. Metalevel Archi-
tectures and Separation of Crosscutting Concerns 3rd Int’l
Conf. (Reflection 2001), LNCS 2192. Springer-Verlag, Sept.
2001.


	Introduction
	The FuseJ Approach
	FuseJ Component Model
	FuseJ Component Composition Language
	FuseJ Run-Time Execution Environment

	Evaluation
	Seamless AOP
	Explicit Support for Process Descriptions
	Reusable Composition
	Selective Composition
	Dynamic Composition
	Automatic Discovery
	Compatibility Requirements

	Conclusions and Future Work

