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Abstract. In this position paper, we propose a new generation work-
flow system for grid services. We observe that grid computing has become
an increasingly important application domain in computer science. Grid
services — a new technology based on web services — are expected to be-
come the de facto standard for grid computing. Similar to web services,
an effective mechanism is needed for the composition of grid services.
Existing technologies, however, have a number of important drawbacks:
they have limited or no support for modularization of crosscutting con-
cerns, for dynamic workflow adaptation, and for high-performance com-
puting. We propose a new generation workflow system that is tailored
specifically for grid services, and that tackles these problems, among
others.
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1 Introduction

Over the last years, grid computing has become an increasingly important re-
search domain within computer science. “The Grid” can be described as a ser-
vice for sharing computing power and data storage capacity over the Internet.1

The specific problem that lies at the heart of this technology is coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual or-
ganizations [1]: the large scope of many current scientific problems makes it
increasingly difficult to solve them using only one computer system, and forces
the use of a distributed solution. By creating a virtual organization of different
resources, which typically don’t belong to the same owner but are connected
through the Internet, it is possible to address these problems. A recent challenge
is the use of grid technology beyond scientific applications, more specifically in
the production and design of products in industrial environments. Such design
tasks typically require the use of multiple complex simulation- and optimization
tools, which are used as part of a design process workflow.

1 http://gridcafe.web.cern.ch/gridcafe/
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Since 2002, a standardization effort for grid computing has been active under
the form of the Open Grid Services Architecture (OGSA).2 This initiative aims
to promote the acceptance and application of grid technologies through standard-
ization. Its main task is the harmonization of academic activities concerning the
Grid, with web services [2], a technology which also has a lot of industry sup-
port. Web services are applications that are accessible through the Internet and
which use SOAP/XML for the transmission of information and WSDL/UDDI
for the description and discovery of other web services. The OGSA standardiza-
tion work has led to the development of grid services [3], which are actually a
subclass of web services, with additional properties relevant for grid computing.
It is expected that grid services will soon become the de facto standard for grid
computing.

Although the services themselves have been standardized, composing grid
services is still an open issue. Grid services are currently typically composed
by manually writing the necessary glue-code in programming languages such as
C and Java. In the web services world, however, it has been identified that a
composition of web services is more naturally captured by dedicated workflow
languages than by general-purpose programming languages. Languages such as
BPEL4WS [4] and WS-CDL [5] have already been well accepted in the web
services community. Because grid services are a kind of web services, it is in
principle possible to recuperate these workflow languages for grid services. How-
ever, we identify several problems with current practice web service workflow
languages:

– Most workflow languages do not have a clearly defined semantics [6].
– Most languages are not suitable for high-performance computing.
– There is insufficient support for the modularization of crosscutting con-

cerns [7].
– There is insufficient or no support for dynamic adaptation of workflows.

The goal of this position paper is to identify the main limitations of current
approaches for grid service composition, and to specify the requirements of a
workflow system that is specifically tailored for grid service composition, and
which therefore addresses these limitations, among others.

The outline of the paper is as follows. In Section 2, we analyze current ap-
proaches for grid service composition and identify their main limitations. In Sec-
tion 3, we specify the requirements for a workflow system for grid services based
on these limitations. In Section 4, we illustrate the applicability of our approach
by describing the context in which it would typically be used. In Section 5, we
present related work, and in Section 6, we state our conclusions.

2 Limitations of Current Approaches

Several workflow approaches for grid computing currently exist [8–13]. These ap-
proaches, however, use their own service and communication standards, which
2 http://www.globus.org/ogsa/
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makes them incompatible with each other. Furthermore, most of them are not
suited for the new grid services standard. Therefore, composing grid services is
currently typically handled by manually programming glue-code. Existing work-
flow systems for web services can technically be used for composing grid services,
as grid services are a special kind of web services. There are, however, several
problems with current workflow systems for web services which make them less
suited for the grid services context.

Currently, BPEL4WS is well supported and widely accepted as the de facto
standard for web service composition. We therefore limit our discussion of lim-
itations to BPEL4WS; most of the limitations are also applicable to the other,
less frequently used approaches. Note that our approach itself is not based on
BPEL4WS; we merely discuss it here because it is representative of the state of
the art in workflow languages.

2.1 Semantics

van der Aalst [6] observes that most workflow languages for web services do not
have a clearly defined semantics. BPEL4WS is a combination of WSFL [14] and
XLANG [15], which are in their turn based on other, earlier languages. A large
amount of the functionality of the original languages has ended up in the new
language. This makes BPEL4WS expressive at the price of being complex.

2.2 High-performance Computing

Another important topic regarding workflow languages for grid services is the
support for the specific requirements that are typically of importance with
high-performance computing. In such an environment, it is common that large
amounts of data need to be transferred from one step in a workflow to another.
Special attention should be directed to how this happens: it would, for example,
be unacceptable if all these data were transferred to a central workflow coordi-
nator before being transferred to a next step. This is, however, current practice
in BPEL4WS workflow systems.

2.3 Separation of Concerns

BPEL4WS does not have sufficient support for separation of concerns [16]. It is
very difficult to modularize BPEL4WS processes in an effective way, because each
process must be specified in a single XML file. Furthermore, it is not possible to
specify sub-processes separately. Complex processes thus give rise to large XML
files, which can become difficult to understand and maintain. A workaround
for this problem is to expose sub-processes as separate services, but this is not
always desirable, as it introduces additional overhead and scoping problems.

Even if BPEL4WS would support sub-processes, one would still not be able
to modularize every concern successfully. Kiczales et al. [7] recognize that some
concerns of an application cannot be modularized using existing software devel-
opment methods: the implementation of these concerns is completely spread out
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over the different modules of the system. The same logic is repeated among differ-
ent modules, resulting in code duplication. This code duplication makes it very
difficult to add, modify or remove these concerns [17]. Examples of such crosscut-
ting concerns are security concerns such as access control and confidentiality [18],
debugging concerns such as logging [19] and timing contract validation [20], and
business rules such as billing [21].

The goal of aspect-oriented software development (AOSD) is to achieve a
better separation of concerns, by allowing crosscutting concerns to be speci-
fied in separate modules called aspects, so that adding, modifying or removing
these concerns does not require changes to the rest of the system. As the cross-
cutting concerns we mentioned above are encountered frequently in BPEL4WS
workflows [22–25], a solution for better modularization based on aspect-oriented
techniques is necessary.

2.4 Dynamism

BPEL4WS does not support altering the workflow specification while it is run-
ning. The only exception is altering the concrete partner bindings (web services)
when the additional standard WS-Addressing [26] is employed. In a grid ser-
vices context, where long-running computations are the norm, dynamic workflow
adaptation is essential in order to manage changing requirements.

3 A New Generation Workflow System

The goal of our approach is to offer a new generation workflow system, which
is specifically tailored for grid service composition, and which therefore ad-
dresses the problems that were identified above, among others. This section
specifies the requirements for this workflow system. These requirements can be
divided into six properties, namely workflow, AOSD, dynamism, modularity,
high-performance computing, and semantics. Each of these properties is dis-
cussed in further detail below.

3.1 Workflow

Every workflow language needs to define the basic activities that it supports, and
how these activities can be ordered. Concerning the basic activities, we support
invoking grid services (both synchronously and asynchronously), and assigning
and retrieving variables.

Concerning the ordering of activities, existing literature is useful when decid-
ing which kinds of orderings must be supported. For example, van der Aalst et
al. [27] have identified a number of recurring workflow patterns, from elementary
to complex, based on an extensive study of existing workflow languages. These
patterns can be divided into six categories: basic control patterns, advanced
branching- and synchronization patterns, structural patterns, patterns involving
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multiple instances, state-based patterns, and cancellation patterns. Our work-
flow language naturally supports the basic control patterns (such as sequence
and exclusive choice), but regarding the more complex patterns, we need to
weigh expressivity against clarity.

3.2 AOSD

Just like with regular software, some concerns of a grid service composition (such
as billing and logging) cannot be modularized using current technologies: they
end up scattered across the composition, and tangled with one another. This
makes it difficult to add, modify or remove these concerns. In order to avoid
such problems, one of the main properties of our workflow system is that it
supports AOSD in order to allow the modularization of crosscutting concerns.

We propose a joinpoint model that allows advices to be executed before,
around and after each basic workflow activity (e.g. service invocations and vari-
able assignments). Pointcuts are expressed in a language based on logic pro-
gramming, which allows selecting joinpoints based on the names and types of
the corresponding workflow activities. Advices are expressed in the basic work-
flow language.

Because workflows involving grid services typically run for a long time, and
on expensive infrastructure, it is important that the chance of encountering
unexpected behavior is minimized. Therefore, we require that all properties of
aspect-oriented interactions (such as the order in which multiple advices, which
are applicable on the same joinpoint, are applied) are specified in advance.

3.3 Dynamism

Grid workflows often take a lot of time to complete, because of the complicated
calculations and the large amounts of data that are involved. Additionally, they
run on complicated, expensive infrastructure, which may be used on a pay-per-
use basis. This makes it prohibitively expensive if workflows do not behave as
expected, and have to be restarted.

This problem is our motivation for requiring that all properties of aspect-
oriented interactions are specified in advance. However, this does not solve the
problem completely: suppose that a certain business unit of a company is await-
ing the results of a grid workflow that is taking more time to complete than
expected. In such a case, it could be useful if the workflow could be modified
while it is running in order to get it to finish faster (e.g. by removing certain parts
of the workflow that are not considered essential to obtain the results needed by
the business unit).

As another example, consider the case where an error is discovered near the
end of a workflow that has already performed a lot of useful computations. In
this case, correcting part of the workflow while it is running would certainly be
preferable to terminating it and restarting it after the workflow is corrected.

Therefore, our workflow system supports dynamic workflow adaptation, i.e.
it is possible to modify workflows while they are being executed. We allow pieces
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of workflow to be added, replaced or removed in any place where the control flow
has not yet passed at the time of the modification. We aim to prevent introducing
specific language constructs for this purpose: a piece of workflow should not need
to know that part of it might be adapted during its execution, or that it might
be used to replace another piece of workflow.

The dynamism we discussed above concerns the basic workflow description.
However, dynamism can be useful with respect to AOSD, too: several aspect-
oriented programming (AOP) languages [28, 29] already support dynamic en-
abling and disabling of aspects in order to facilitate adapting to concrete situ-
ations. Therefore, our workflow system supports such dynamic AOP, too. Al-
though dynamic AOP once had a reputation of introducing high performance
overhead, recent work [30] has shown that it is possible to implement dynamic
AOP efficiently using techniques such as just-in-time compilation and caching.

3.4 Modularity

Because of our system’s support for AOSD, it facilitates modularizing crosscut-
ting concerns. Using current workflow languages, however, it is not always possi-
ble to effectively modularize even the basic workflow. For example, a BPEL4WS
process is always a single monolithic specification, which makes it impossible to
reuse parts of a process elsewhere (unless these parts are modeled as separate
web services, which introduces a large amount of overhead).

Therefore, we support sub-processes by allowing parts of a workflow to be
specified in separate modules. These modules can then evolve independently
from the main workflow, and can be reused in other workflows. It is clear that
such an approach is an improvement on a number of current approaches.

3.5 High-performance Computing

In traditional web services applications, the messages that are exchanged be-
tween services are typically very small. In grid computing, on the other hand,
it is common that large streams of data need to be transferred. Therefore, re-
quiring that all data pass through a central workflow coordinator — as is the
case with conventional workflow languages such as BPEL4WS — is unaccept-
able, as it would require much more network capacity than is actually necessary.
We therefore aim to remedy this problem by providing a distributed workflow
coordinator that makes sure large data streams are routed directly to the next
step in the workflow.

In order to provide this functionality, we introduce a language construct that
allows specifying which data streams may be large and may thus require more
efficient modes of network transport. On the other hand, the workflow engine
may decide which streams of data are large, and handle them accordingly, if such
information is not specified.
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3.6 Semantics

It has been argued that most current workflow languages do not have a clearly
defined semantics [6]. Among others, this hampers compatibility between differ-
ent engines for a same workflow language. Therefore, we aim to define a formal
operational semantics for our workflow language.

4 Applicability

Existing work on grid computing mostly focuses on scientific applications, such
as bio-informatics or high-energy physics. Our approach, however, is aimed at
design and production in industrial settings — an increasingly important appli-
cation domain for grid services.

A lot of design activities in such industrial setting traditionally require pro-
totypes to be built and tested in order to obtain important information on the
design (e.g. crashing an automobile into a wall in order to discover safety in-
formation, placing a model of a plane in a wind tunnel in order to discover
aerodynamics information, etc.). Innovation in computer science has made it
possible to simulate this kind of tests. Because this kind of virtual prototyping
requires a lot of computing power and involves a lot of data, such problems
cannot be solved easily using only one computer system. Using grid computing,
however, these problems can be solved effectively.

The industrial partner for our research currently sells such virtual prototyp-
ing grid software to clients that wish to test their products. These clients then
use their own grid infrastructure to run the simulations. This limits the applica-
bility of the industrial partner’s products, as the required infrastructure’s cost
may be prohibitively high.

Our workflow system would, however, enable a completely new business
model, in which clients use the infrastructure of the industrial partner on a
customizable basis. In such a scheme, clients would not be forced to invest in
specific infrastructure any more, and the industrial partner would not be forced
to spend time on offering support for clients’ local software.

The contracts of the industrial partner with its clients may vary a lot: one
client may require other grid services than another, the service level agreements
may differ, or different billing schemes (pay-per-use, flat-fee, etc.) may be used.
Our workflow system would facilitate enforcing such different contracts, as these
could be modularized as aspects.

Of course, the applicability of our approach is not limited to the virtual
prototyping case presented above: the properties of our system, such as support
for AOSD and dynamic workflow adaptation, are also useful in the traditional
scientific application domain of grid computing, and even in the application
domain for web services.
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5 Related Work

An aspect-oriented extension to BPEL4WS — AO4BPEL [23] — has been pro-
posed. This extension supports dynamic adaptation of aspects. However, be-
cause it is an extension to BPEL4WS, it inherits the deficiencies identified
in this paper, such as limited support for modularization (of non-crosscutting
concerns) and high-performance computing. Another approach that recuperates
aspect-oriented ideas in the domain of web services is the Web Services Manage-
ment Layer [25]. The WSML modularizes redirection, advanced selection poli-
cies, and management concerns such as caching and billing using aspects. The
WSML does, however, not directly support web service composition and relies
on BPEL4WS for that end. As such, it also inherits the disadvantages discussed
in this paper.

Currently, grid services are mostly composed manually, by writing programs
in traditional programming languages (such as C and Java), which use libraries
such as the ones provided by the Globus Toolkit3 to interact with concrete grid
services. This situation obviously has a lot of drawbacks, as these languages
do not support dynamic adaptation of the composition, or modularization of
crosscutting concerns. Recently, however, a number of approaches have been
proposed that aim to remedy these problems.

GridNexus [31] is a graphical system for creating and executing scientific
workflows in a grid environment. A GUI allows developers to specify processes
by creating directed acyclic graphs whose nodes perform simple computing tasks,
or invoke grid services. Processes can be saved as composites, which can then be
reused in other processes. Visual process specifications are represented by scripts
written in a language called JXPL, which can be executed by an appropriate
engine. By using such scripts, the user interface is separated from workflow
execution. Although this approach is a serious improvement on manual grid
service composition, it is targeted mainly at scientific grid applications, and not
at industrial applications. It does not support dynamic workflow adaptation nor
advanced separation of concerns.

Kepler [32] is a graphical workflow system similar to GridNexus (both ap-
proaches even use the same GUI technology). Like GridNexus, processes are
directed acyclic graphs. The most important difference is that Kepler does not
translate diagrams to scripts in order to execute workflows: workflows are ex-
ecuted by the GUI, thus increasing coupling between process definition and
execution. Kepler is also aimed at scientific applications, and does not support
dynamic workflow adaptation nor advanced separation of concerns.

6 Conclusions

In this position paper, we observe that, although the application domain for grid
services is rapidly expanding, current approaches for grid service composition

3 http://www.globus.org/toolkit/
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have a number of disadvantages that limit their applicability, and thus hamper
the acceptance of grid services in industrial settings. The most important disad-
vantages are insufficient support for AOSD, for dynamic workflow adaptation,
and for high-performance computing.

Therefore, we propose a new generation workflow system, which is specifically
tailored for grid service composition, and thus tackles these problems, among
others. We present the requirements for our workflow system, and illustrate its
applicability. Our future work will be directed at performing a first iteration on
the design and implementation of our system.
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