Orchestrating Nomadic Mashups using Workflows

Eline Philips”
ephilips@vub.ac.be

_Niels Joncheere
njonchee@vub.ac.be

Wolfgang De Meuter
wdmeuter@vub.ac.be

Andoni Lombide

Carreton
alombide@vub.ac.be

Viviane Jonckers
vejoncke@vub.ac.be

Software Languages Lab
Department of Computer Science
Vrije Universiteit Brussel, Belgium

ABSTRACT

Middleware for mashups is currently not able to compose
the services residing in a nomadic network. Its transient
connections and connection volatility result in a highly dy-
namic environment where services can appear and disappear
at any point in time. The consequence is that these services
must be discovered at runtime in an ad hoc fashion and
must execute asynchronously to prevent a disconnected ser-
vice to block the execution of an entire mashup. Orchestrat-
ing loosely coupled asynchronously executing services calls
for a process-aware approach. This paper proposes the use
of workflow patterns to enable a high level specification of
the interactions between the mobile services constituting a
nomadic mashup.

1. INTRODUCTION

Today’s society is characterised by the ubiquity of mo-
bile devices such as mobile phones, PDAs and handhelds.
The omnipresence of wireless communication facilities, for
instance WiF1i, 3G and Bluetooth, enable us to connect these
devices in a mobile ad hoc network (MANET). Nomadic net-
works fill the gap between traditional networks and mobile
ad hoc networks as these nomadic environments consist of
both a group of mobile devices and a fixed infrastructure.
Mobile devices in a nomadic network can move around dy-
namically while trying to maintain a connection to the fixed
infrastructure. In such networks the heavy computations
are performed by the fixed infrastructure [6]. For these kind

*Funded by a doctoral scholarship of the “Institute for the
Promotion of Innovation through Science and Technology in
Flanders” (IWT Vlaanderen).

TFunded by a doctoral scholarship of the “Institute for the
Promotion of Innovation through Science and Technology in
Flanders” (IWT Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Mashups’09, October 25, 2009, Orlando, FL, USA

Copyright 2009 ACM 978-1-60558-364-8/08/12 ...$10.00.

of networks, an abundance of interesting applications can be
supported as these networks are omnipresent (for instance in
hospitals, airports, shopping malls, ...). However, the devel-
opment of such applications is not straightforward as special
properties of the communication with mobile devices have
to be taken considered.

A first characteristic that has to be taken into account
when composing a nomadic mashup is the connection volatil-
ity which is inherent to the environment. Nomadic mashups
consist of mobile mashup sources which are residing in the
physical world. While in conventional mashups the services
constituting the mashup are known beforehand (e.g. by a
fixed URL to a RSS feed) and are assumed to execute in
a reliable network infrastructure (e.g. a Web 2.0 environ-
ment), the services constituting a nomadic mashup have to
be dynamically discovered at runtime, since these services
can be hosted by mobile devices that can connect and dis-
connect at any point in time. Furthermore, a mobile service
that became unavailable should not block the execution of
an entire mashup. Nomadic mashup sources can take many
forms, ranging from small sensors on mobile devices up to
complex services running on a fixed backbone infrastructure.
As in mobile ad hoc networks the challenge is making the
high heterogeneity of devices co-operate and deal with their
transient and permanent failures.

Although there exists middleware [6] and programming
languages, like AmbientTalk (explained in section 3.1), which
are developed to meet the specific properties of dynamically
changing environments, the composition between the differ-
ent services is still programmed in an ad hoc way. In or-
der to orchestrate the large heterogeneity of services we en-
counter, reusable composition patterns are needed to specify
the interactions at a higher level. In classic networks, this
orchestration can be achieved by using workflow languages
which support a parallel execution, the composition of ser-
vices and the description of control flow. However, these
existing workflow languages are not really suited to describe
mashups for nomadic networks, because they do not take
their specific characteristics into account.

As AmbientTalk is specifically sculpted to deal with the
phenomena in mobile networks, such as connection volatil-
ity, autonomy, natural concurrency and ambient resources
[4], we have used this scripting language and its runtime to
build workflow patterns on top of. Hence, enabling the spec-
ification of the control flow for mashups at a higher level and

incorporating the specific requirements of the environment.

The problem of working with mobile devices in a dynam-
ically changing environment is general to all applications in
both nomadic and mobile ad hoc networks. Our proposed
solution focusses on nomadic mashups which are a concrete
example of architectures that are affected by the phenomena
of mobile networks.

This paper is organised as follows: first we describe some
related work before exhibiting our approach on orchestrat-
ing services in a nomadic environment. In this section we
first introduce the programming language AmbientTalk, as
this language forms the foundation on top of which we are
building our nomadic workflows solution. We use the work-
flow paradigm in order to divide processes into activities
where control flows from one activity to another according
to a number of patterns that support among others concur-
rency. Thereafter, the implementation of these workflows is
discussed and exemplified. To conclude, some future work
and general conclusions are presented.

2. RELATED WORK

Current mashup development tools target a reliable Web
2.0 environment. We can distinguish two approaches: one
is using a graphical representation of the service compos-
tion, the most representative one is Yahoo! Pipes [10]. The
execution engines of such tools assume a stable network in-
frastructure to allow the server running the engine to coor-
dinate the different services (e.g. Yahoo! Pipes run on a
dedicated Yahoo! server and offer no runtime service dis-
covery but assume fixed URLs to reach services). These as-
sumptions cannot be made in nomadic networks where some
of the mashup components dynamically join and leave the
network while the mashup is executing and disconnections
are rather the rule than the exception.

The other approach is by expressing the composition of
remote services in web scripting languages using AJAX. Ex-
pressing service compositions with AJAX happens using an
event-driven paradigm based on callbacks. This causes more
complicated event-driven applications to be very hard to un-
derstand, as we will show in section 3.1 for the AmbientTalk
language, which uses a similar event-driven paradigm but
targeted towards mobile ad hoc networks. There exist higher
level coordination languages based on Javascript and AJAX,
such as Ubiquity [1] and Orc [5]. Orc for instance uses
a process calculus to express the coordination of different
processes. However, these languages also assume a stable
network interconnecting the services.

Other coordination languages are not specifically dedi-
cated to mashup development, but still could be used for
this purpose. Reo [2] is a glue language that allows the or-
chestration of different heterogeneous, distributed and con-
current software components. Reo is based on the notion
of mobile channels and has a coordination model wherein
complex coordinators, called connectors, are composition-
ally built out of simpler ones (where the simplest ones are
channels). These different types of coordinators dictate the
coordination of the simpler connectors, which eventually co-
ordinate the software components that they interconnect.
When software components are disconnected, one has to
manually invoke the migration of a component to a different
node, however the channels connecting the component are
automatically rebound.

A workflow language that specifically targets mashups is

Bite [3], which focusses on web-based services. While Bite
supports asynchronous messaging and different communica-
tion protocols, it operates on services that are known be-
forehand and assumes fixed URLs to reach those services.
Although there exist workflow languages for dynamically
changing environments, like mobile ad hoc networks and no-
madic networks, they do not cope with all issues inherent
to nomadic network applications. CiAN [12] is a workflow
engine that was developed to work in a mobile ad hoc net-
work. As a centralised orchestration engine can not be used
in MANETS, CiAN decides the services to be invoked a pri-
ori. In a dynamic changing environment where services can
come in and go out of reach at any possible time, it is not
possible to know all services beforehand. An other workflow
language, Workpad [7], is developed with nomadic networks
in mind. This language also lacks support for disconnections
that are inherent to the mobile part a nomadic network con-
sists of. Mobile Business Processes [9] is a workflow engine
by Nokia which offers a repository of existing services that
can be used to define business processes. Although these
workflows are run on mobile devices, they only interface with
fixed web services that are known beforehand (by means of
a URL).

3. NOMADIC WORKFLOWS

In stable networks, workflows are used to model and or-
chestrate complex applications. The workflow architecture
is typically centralised and the interactions between the dif-
ferent services are synchronous. There also exist distributed
engines for workflows and more recently mobile ad hoc net-
works and nomadic networks are also targeted by the work-
flow community. However, these workflow languages have
almost no support for handling the high volatility of these
kind of networks.

AmbientTalk is a programming language which treats dis-
connections at the very heart of its computational model.
Moreover, this language supports dynamic service discovery
which is opportune for nomadic networks. Although this
language is suited for writing applications for mobile ad hoc
and nomadic networks, the orchestration of these applica-
tions is still programmed in an ad hoc manner. Complex
applications or mashups that consist of asynchronously ex-
ecuting distributed services become hard to develop, under-
stand and reuse. In this section, we first briefly explain Am-
bientTalk and how it offers support for scripting together
mobile services. Subsequently, we introduce our workflow
abstractions that we built on top of this language.

3.1 AmbientTalk

In this section, we briefly explain the programming lan-
guage support that we assume to build our workflow lan-
guage targeting mashups in nomadic networks. The ambient-
oriented programming paradigm [4] is specifically aimed at
such applications. For this reason we chose to build our
workflow language on top of an ambient-oriented program-
ming language. Ambient-oriented programming languages
should explicitly incorporate potential network failures in
the very heart of their computational model. Therefore,
communication between distributed application components
should happen without blocking the execution thread of the
different components such that devices may continue doing
useful work even when the connection with a communication
partner is lost.

Ambient-oriented languages also deal with the dynami-
cally changing network topology in nomadic and mobile ad
hoc networks. The fact that in such networks devices spon-
taneously join with and disjoin from the networks means
that the services these devices host cannot be discovered
using a fixed, always available name server, but instead re-
quire dynamic service discovery protocols (e.g. broadcasting
advertisements to discover nearby services).

Both the runtime discovery of and the non-blocking com-
munication between distributed application components in
nomadic and mobile ad hoc networks give rise to an event-
driven architecture, where there is a natural form of concur-
rency among the distributed application components. Such
architectures can greatly benefit from process-aware tech-
nologies such as workflows to allow a separate and higher

level orchestration of the concurrent processes in the mashup.

AmbientTalk [14, 13] is a distributed programming lan-
guage embedded in Java!. The language is designed as a
distributed scripting language that can be used to compose
Java components which are distributed across a nomadic or
even mobile ad hoc network. The language is developed on
top of the J2ME platform and runs on handheld devices such
as smart phones and PDAs. Even though AmbientTalk is
embedded in Java, it is a separate programming language.
The embedding ensures that AmbientTalk applications can
access Java objects running in the same JVM. These Java
objects can also call back on AmbientTalk objects as if these
were plain Java objects.

The most important difference between AmbientTalk and
Java is the way in which they deal with concurrency and
network programming. Java is multithreaded, and provides
either a low-level socket API or a high-level RPC API (i.e.
Java RMI) to enable distributed computing. In contrast,
AmbientTalk is a fully event-driven programming language.
It provides only event loop concurrency [8] and distributed
objects communicate by means of asynchronous message
passing. Event loops deal with concurrency similar to GUI
frameworks (e.g. Java AWT or Swing): all concurrent activ-
ities are represented as events which are handled sequentially
by an event loop thread.

AmbientTalk offers direct support for the different char-
acteristics of the ambient-oriented programming paradigm
described above.

1. In an ad hoc network, objects must be able to dis-
cover one another without any infrastructure (such as
a shared naming registry). Therefore, AmbientTalk
has a service discovery engine that allows objects to
discover one another in a peer-to-peer manner. Java
interfaces act as the common pieces of information by
means of which objects are advertised and discovered
(publish/subscribe service discovery engine).

2. In an ad hoc network, objects may frequently dis-
connect and reconnect because of network partitions.
Therefore, AmbientTalk provides fault-tolerant asyn-
chronous message passing between objects: if a mes-
sage is sent to a disconnected object, the message is
buffered and resent later, when the object becomes
reconnected. Other advantages of asynchronous mes-
sage passing over standard RPC is that the asynchrony
hides latency and that it keeps the application respon-

!The language is available at prog.vub.ac.be/amop

sive (i.e. the event loop is not blocked during remote
communication and is free to process other events).

3.2 Distributed Programming in AmbientTalk

AmbientTalk uses a classic event-handling style by rely-
ing on blocks of code that are triggered by event handlers.
Event handlers are (by convention) registered by a call to a
function that starts with when.

The following code snippet illustrates how AmbientTalk
can be used to discover a LocationService and WeatherService in
the ad hoc network. Once the LocationService is discovered,
it is sent a message along with the current GPS coordinates
to determine the current location of the user. As soon as
a reply is received, the lookup for the weatherService starts.
When such a service is discovered, it is sent the getWeather
message along with the current location that was received
from the LocationService.

// when a service classified as LocationService is discovered,
// this object will be accessible via locationSuc
when: LocationService discovered: { |locationSvc]|
// send asynchronous message getLocation to discovered object
when: locationSvc<-getLocation(gpsModule.getCoordinates())
becomes: { |myLocationl|
// when reply is received,
// discover an object of type WeatherService
when: WeatherService discovered: { |weatherSvc|
// send asynchronous message to the discovered WeatherService
when: weatherSvc<-getWeather (myLocation)
becomes: { |weatherInfol
// update weather information in
// the user interface
}
}

The above code consists of four event handlers. The first
event handler, registered by means of the when:discovered:
control structure, is invoked when the language runtime
discovers a LocationService component. Ilere, LocationService
refers to a Java interface. The discovered object is acces-
sible via the locationsve variable, which denotes a remote
AmbientTalk object that wraps a Java component imple-
menting the location service. The syntax obj<-msg() denotes
an asynchronous message send and is used here to query
the LocationService object for the current location of the user
(e.g. city) given his GPS coordinates.

When the query message is received by the remote
locationSve Object, that object’s getLocation method is in-
voked. The return value of this method is used as the reply
to the query. This reply is signalled asynchronously to the
caller. The when:becomes: control structure is used to install
an event handler that can process this reply. The return
value is passed to this event handler (cf. the myLocation vari-
able in the example). As soon as this value is received, this
event handler registers two new event handlers (following the
same pattern) to query a WeatherService about the weather at
myLocation, and as soon the reply to this query is received
update the user interface.

As can be seen from the above example, service discovery
and replies of remote queries are represented in AmbientTalk
as events that trigger the appropriate event handlers. Care
must be taken when coordinating and synchronizing asyn-
chronous invocations: nesting callbacks (like in the exam-
ple presented above) introduces simple synchronization, but
more complex synchronization and coordination patterns re-
quire more complicated structures (e.g. the lookup of a

WheatherService could happen in parallel without waiting for
the LocationService to reply). While in this simple example
the control flow remains apparent enough to understand,
the control flow of large-scale event-driven applications can
quickly become puzzling. In the following sections we discuss
how to add a process-aware layer of abstraction on top of
AmbientTalk (which uses messages/events as the level of ab-
straction) such that the asynchronously executing processes
can be orchestrated by means of workflows.

3.3 Workflow Patterns in AmbientTalk

This section describes the implementation of some work-
flow patterns on top of AmbientTalk?. Consider the ex-
ample that was given in section 3.1 where a user interface
is updated with the current weather at the user’s location.
This example could be expressed by a sequence pattern as
is depicted in figure 1. The circle at the end of the pattern
denotes a stop node, whereas the rectangles represent the
used services.

The description of the workflow resides on the backbone
of the nomadic system, whereas the different services are ei-
ther located on fixed devices or on mobile devices that move
around through the environment. By situating the workflow
description on the fixed infrastructure, we ensure that the
workflow itself cannot disconnect and become unavailable
during its execution.

First, we explain how these services are implemented in
AmbientTalk and thereafter we describe how these workflow
patterns, with an emphasis on the sequence pattern that is
used in the example, are implemented and can be used as an
abstraction layer for describing the control flow. Afterwards
we describe how more complex workflows can be expressed
by combining several workflow patterns.

WeatherService GUI

O

LocationService

Figure 1: Workflow representation for a mashup
consisting of three services.

In AmbientTalk, services are implemented as distributed
objects that advertise themselves by means of a service type
tag. Currently, services have a fixed interface and must im-
plement a start method which performs the actual execu-
tion of the service. This start method has one argument
which allows passing data between the different services.
The code snippet below illustrates the implementation of
the WeatherService in AmbientTalk. Important to note is that
this is code running on the service host. The mashups mak-
ing use of this service are oblivious to its implementation,
they should only match on the service type tag under which
the service is advertised.

deftype WeatherService;

def service := object: {
def start(args) {
// Check if args is a location, if not throw an error.
// Otherwise, determine the weather
// at this location and return it.
};
};

export: service as: WeatherService;

2The implementation is available at http://code.google.
com/p/ambienttalk/

In order to retrieve the forecast information of the user’s
location, we need to compose the two services, LocationService
and WeatherService, by making use of a sequence pattern. This
sequence pattern must first send the asynchronous start mes-
sage to the first service, and afterwards invoke the
WeatherService by passing the result of the invocation of the
LocationService to it. The result of the WeatherService invo-
cation is afterwards passed to the qur service where also
the start method is invoked. The reply of this invocation
is then passed to the stop pattern, which ends the work-
flow. Hence, the implementation of this small example uses
two control flow patterns, namely sequence and stop. These
workflow patterns are implemented as AmbientTalk objects
which are tagged. These tags are used to distinguish be-
tween normal patterns, patterns that signal multiple replies
(such as a simple merge) and service type tags (that denote
yet to be discovered services). In order to enable a transpar-
ent nesting of patterns and services, we need to make sure
that these interfaces match. Therefore, workflow patterns
also implement a start method.

The code below presents the implementation of a sequence
pattern. This pattern is initialised with a table of com-
ponents componentsTable. When invoking its start method,
all components of that table (service type tags or workflow
patterns) are invoked sequentially and the last component
of the sequence is returned. Remember that services can
be executed on a mobile device residing in the nomadic en-
vironment, and hence the connections found here can be
transient. The workflow patterns keep this transient and
permanent failures into account by incorporating timeouts,
after which a new service with the same type tag is looked
up.

def Sequence := object: {
def componentsTable;

// Constructor of the Sequence pattern.
def init(table) {
componentsTable := table;

};

def start(args) {
// Creates a notification object on which when-callbacks
// can be registered.
def result := makeFuture();

def execute(idx, args) {
def component := componentsTable[idx];
if: (is: component taggedAs: Service) then: {
// Send service the asynchronous start message.
// After service signalled a reply, check if the
// sequence has ended.
// If so, return the notifier object that will
// signal the reply event from the service
// invocation, such that other patterns can be
// notified when the sequence is done executing.
// If not, call execute with an increased index (idz).
} else: {
// Invoke the start message of the pattern.
}
}
}
} taggedAs: [Pattern];

Important to note is that this sequential execution can
be achieved by explicitly waiting for the output of a ser-
vice before starting the following one, without having to
manually synchronize asynchronously executing process by
nesting callbacks in the correct way. After the workflow
pattern’s execution has finished, the stop pattern will use
this last component to listen for its reply and eventually

end the workflow when this reply (which is asynchronously
computed) is received.

As can be seen in the abstract implementation (the full
implementation is out of the scope of this paper) of the
execute method, a test is performed to check the type of
the sequence’s current component. By hiding the different
implementations of components (services or patterns) in the
patterns itself, we allow composition of nested workflow pat-
terns at an abstract level. Furthermore, the introduction of
workflow patterns on top of AmbientTalk makes the orches-
tration of services explicit whereas the control flow in the
language AmbientTalk itself is programmed in an ad hoc
manner. By adding this extra layer of abstraction we enable
composable, reusable services.

The stop pattern and its rationale is explained later on.
The code below shows the implementation of our small ex-
ample. The last line of the code fragment invokes the exe-
cution of workflow.

sequence := Sequence.new([LocationService, WeatherService, GUI]);

stop := Stop.new(sequence);
stop.start();

3.3.1 Combining Workflow Patterns

We introduce a more advanced mashup example which
combines several workflow patterns and can be used to illus-
trate the composition of patterns. Consider an airport where
passengers benefit from a rich airport infrastructure. For in-
stance, passengers get a reminder on their PDA five minutes
before the boarding time of their flight. This can be achieved
by combining several services, namely a ETicketService,
DigitalClock, BoardingService and ReminderService. This mashup
both uses services residing on the backbone infrastructure
and the mobile parts of a nomadic network. The
ETicketService is a service on the passenger’s mobile phone
which contains all the information of the electronic ticket
he/she bought. The services are part of the fixed infrastruc-
ture of the nomadic network and respectively are able to
retrieve the current time, information of the boarding time
of a flight and send reminders to certain passengers. Figure
2 depicts the workflow representation for this mashup. This
workflow uses both a parallel split and synchronize pattern
to describe the orchestration of the different services.

DigitalClock

ETicketService

ReminderService—>C)

BoardingService

Figure 2: Workflow representation for a mashup us-
ing a parallel split and synchronize.

A parallel split diverges a single branch into two or more
concurrently executing branches. As can be seen in the fig-
ure above, the DigitalClock and BoardingService are two parallel
branches that can be executed independently of each other.
Note that the synchronization of the two processes execut-
ing in parallel cannot be expressed by nesting callbacks, such
as in the example in section 3.2. Although it is possible to

express such a synchronization in AmbientTalk, it requires
the extensive use of the reflective and metaprogramming fa-
cilities of the language and leads to very complicated and
difficult to reuse code. The implementation of this pattern
has as input a tag which can be either an intentional de-
scription of a service or a pattern. The output of the paral-
lel split is a list of components that can contain intentional
descriptions of services by means of a type tag or objects
that implement a start method, for instance a workflow pat-
tern. A synchronization pattern converges several branches
that have all succeeded into one subsequent branch. Con-
cretely, when both the pigitalClock and BoardingService have
terminated, the ReminderService is activated. The input of
this pattern is a list of components (possibly the output of
a parallel split pattern) and has as output a type tag that
denotes a service or a pattern. The implementation of our
mashup example is given by the following code snippet.

def parallelSplit :=
ParallelSplit.new(ETicketService,
[DigitalClock, BoardingService]);

def synchronization :=
Synchronization.new(parallelSplit, ReminderService);

def stop := Stop.new(synchronization);

stop.start();

Note that a stop pattern is also necessary in order to com-
plete this workflow. The typeTag variable of the pattern can
be instantiated with an intentional description of a service
(for instance a tag DigitalClock) or a workflow pattern. The
start method of the stop pattern needs to start this service
or pattern. In case of a pattern, the output of this pattern
can be either a type tag of a service or a list (when the
pattern was for instance a parallel split). This output also
needs to be started in order to have a correct termination of
the workflow.

def Stop := object: {
def typeTag;

// Constructor of the Stop pattern.
def init(tag) {
typeTag := tag;

H

def start() {
if: (is: typeTag taggedAs: Service) then: {
// Start the service.
} else: {
// Start the component and after it’s completed,
// invoke the start method of the output (reply).
when: serviceTag.start() becomes: { |replyl
if: (is: reply taggedAs: Table) then: {
// Start each component of the list.
reply.each: { |cmp| cmp.start(); };
} else: {
// Start the service.
};
};
};
};
} taggedAs: [Pattern];

3.4 Discussion

The workflow patterns discussed in this section are just
a small selection of the workflow patterns that we have

adapted to the characteristics of nomadic networks and mashups

running on top of them. Although we only have presented

toy examples of mashups, by making use of this selection of
workflow patterns, we have shown that:

e Services constituting the mashup can be hosted on mo-
bile devices and are discovered at runtime in a peer-
to-peer manner based on an intentional description.

e Communication among the different services in a mashup

happens without blocking other concurrently running
services, even if some of them move out of range. This
allows services to remain responsive and perform other
meaningful tasks when interacting with components of
different mashups.

e Communication between services is fault tolerant. The
underlying runtime system guarantees message deliv-
ery by buffering messages that were not received by
the destination service and attempting to resend them
when the destination service becomes available again.

These implemented properties allow us to use standard reusable

workflow patterns to describe the coordination between con-
currently running distributed application components in no-
madic networks without having to manually coordinate the

interactions among these components using explicit callbacks.

We have deployed AmbientTalk applications on a number
of mobile devices such as the HTC Touch Cruise and are
currently in progress of deploying them on newer platforms
such as Google Android and the Apple iPhone. Since our
workflow abstractions simply assume an AmbientTalk vir-
tual machine, they are directly usable on these platforms as
well.

4. CONCLUSION

Complex distributed applications (such as mashups) run-
ning in nomadic networks have to be conceived as concur-
rently running activities to allow the different application
components to remain responsive and keep doing useful work
in the face of the frequent network partitions inherent to
these kinds of networks. The orchestration of these concur-
rent activities into meaningful applications currently hap-
pens in an ad hoc way, usually by means of a callback-based
paradigm. Workflows and workflow patterns provide an ad-
ditional layer of abstraction such that interaction patterns
among application components can be specified on a higher
level and be reused because of their loose coupling with the
fine-grained application logic. Unfortunately, current work-
flow systems do not meet all the requirements for the kinds
of applications that we envision in nomadic networks. In
this paper, we have presented the implementation of work-
flow patterns on top of a runtime system that does allow the
orchestration of distributed services in a nomadic network,
thanks to both a peer-to-peer and dynamic service discovery
mechanism and communication primitives resilient to the
volatile connections inherent to such networks. Now that
a number of workflow patterns are implemented, we have
hinted at some future work, most notably the introduction
of new workflow patterns specifically designed for nomadic
networks and a graphical workflow language that allows to
chain together these workflow patterns together graphically
and providing a visual view on the orchestration of the dif-
ferent application components.

S. FUTURE WORK

At this moment, the research of workflow patterns for no-
madic networks is in its earliest phase of development, hence
we were already able to define some issues that have to be
handled in the near future.

Firstly, the current implementation of workflow patterns
is restricted to the control flow patterns defined by van der
Aalst [11]. We would like to extend them by also supporting
data flow patterns and enable more complex ways of passing
data between services. By enabling this data flow, we would
be able to express more advanced mashups.

Currently, the naming and discovery of services happens
via Java interfaces (wrapped in AmbientTalk type tags). Al-
though this already allows describing services intentionally
(by means of simple type tags), the assumption is made
that these type tags represent a unique service and that it
is known by all mashup participants. The discovery mecha-
nism for instance does not take versioning into account. For
example, if the WeatherService from the example in section 3.3
is updated, older clients may discover the updated service,
and clients that want to use only the updated service may
still discover older versions. Clients and services are thus
themselves responsible for checking versioning constraints.

A shortcoming of today’s status is that the services have
a restricted interface. At the moment, services are imple-

mented as distributed objects which implement a start method.

To allow more flexible service compositions, we are working
towards patterns where services can have their own interface.
Currently, calls to such an interface have to be wrapped in
the single start method (e.g. an AmbientTalk object dele-
gating calls to Java components in its start method).

Additionally, we would like to come up with some more
advanced patterns that cope with some specific properties
of the dynamic changing environment. Van der Aalst [11]
describes a synchronisation pattern which succeeds when all
branches have succeeded. In a dynamically changing envi-
ronment, like nomadic and mobile ad hoc networks, 100%
synchronization will not always be possible. Although van
der Aalst presents some synchronisation patterns (like static
partial join for multiple instances), these patterns are not
sufficient. For instance, we would like to let synchronisation
succeed when a selection of the results are available (after
a certain percentage of answers is retrieved, after a certain
period of time, at a predefined timeout value...).

Furthermore, as disconnections are inherent to nomadic
networks it seems appropriate to build in support for com-
pensating actions. As disconnections are the rule rather
than the exception, we want to be able to specify for in-
stance a timeout whenever a certain service is no longer
available. These compensating actions are tightly coupled
to the relaxed synchronisation that can succeed when not
all branches of a workflow were realised.

Finally, we would like to extend our framework by build-
ing a graphical interface on top of our implementation. Most
workflow languages have such an interface which facilitates
the usage of the workflow patterns. By introducing a graph-
ical interface we provide a graphical representation of the
mashup which will make it easier to express the orchestra-
tion of services in a dynamically changing environment.

Acknowledgements

The research presented in this paper is partly funded by
Alcatel-Lucent Bell and the Institute for the Promotion

of Innovation through Science and Technology in Flanders

through the DIY-SE project.

6. REFERENCES
[1] Ubiquity, 2005-2009.

http://labs.mozilla.com/blog/2008,/08/introducing-
ubiquity/.

Farhad Arbab. Reo: a channel-based coordination
model for component composition. Mathematical.
Structures in Comp. Sci., 14(3):329-366, 2004.
Francisco Curbera, Matthew Duftler, Rania Khalaf,
and Douglas Lovell. Bite: Workflow composition for
the web. In ICSOC ’07: Proceedings of the 5th
international conference on Service-Oriented
Computing, pages 94-106, Berlin, Heidelberg, 2007.
Springer-Verlag.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx,
Theo D’Hondt, and Wolfgang De Meuter.
Ambient-Oriented Programming. In OOPSLA ’05:
Companion of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications. ACM Press, 2005.
David Kitchin, Adrian Quark, William Cook, and
Jayadev Misra. The orc programming language. In
FMOODS "09/FORTE ’09: Proceedings of the Joint
11th IFIP WG 6.1 International Conference
FMOODS 09 and 29th IFIP WG 6.1 International
Conference FORTE ’09 on Formal Techniques for
Distributed Systems, pages 1-25, Berlin, Heidelberg,
2009. Springer-Verlag.

Cecilia Mascolo, Licia Capra, and Wolfgang
Emmerich. Mobile computing middleware. In In
Advanced lectures on networking, pages 20-58.
Springer-Verlag, 2002.

[7]

8]

[9]

(10]
(11]

(12]

(13]

(14]

Massimo Mecella, Michele Angelaccio, Alenka Krek,
Tiziana Catarci, Berta Buttarazzi, and Schahram
Dustdar. Workpad: an adaptive peer-to-peer software
infrastructure for supporting collaborative work of
human operators in emergency/disaster scenarios. In
CTS ’06: Proceedings of the International Symposium
on Collaborative Technologies and Systems, pages
173-180, Washington, DC, USA, 2006. IEEE
Computer Society.

Mark Miller, Eric Dean Tribble, and Jonathan
Shapiro. Concurrency among strangers: Programming
in e as plan coordination. In R. De Nicola and

D. Sangiorgi, editors, Symposium on Trustworthy
Global Computing, volume 3705 of Lecture Notes in
Computer Science, pages 195-229. Springer, April
2005.

Lasse Pajunen and Suresh Chande. Developing
workflow engine for mobile devices. In EDOC 07:
Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference, page 279,
Washington, DC, USA, 2007. IEEE Computer Society.
Mark Pruett. Yahoo! pipes. O'Reilly, 2007.

Nick Russell, Arthur H.M. ter Hofstede, Wil M. P.
van der Aalst, and Natalya Mulyar. Workflow
control-flow patterns: A revised view. Technical
report, BPMcenter.org, 2006.

Rohan Sen, Gruia-Catalin Roman, and Christopher D.
Gill. Cian: A workflow engine for manets. In
COORDINATION, pages 280295, 2008.

Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De
Meuter. Linguistic symbiosis between event loop
actors and threads. Computer Languages Systems &
Structures, 35(1), 2008.

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez
Boix, Jessie Dedecker, and Wolfgang De Meuter.
Ambienttalk: object-oriented event-driven
programming in mobile ad hoc networks. In
Proceedings of the XX VI International Conference of
the Chilean Computer Science Society (SCCC 2007),
pages 3—12. IEEE Computer Society, 2007.

