
Isolating Process-Level Concerns using Padus

Mathieu Braem1, Kris Verlaenen2, Niels Joncheere1, Wim Vanderperren1,
Ragnhild Van Der Straeten1, Eddy Truyen2, Wouter Joosen2, and Viviane

Jonckers1

1 System and Software Engineering Lab (SSEL), Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{mbraem,njonchee,wvdperre,rvdstrae,vejoncke}@vub.ac.be
2 DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

{kris.verlaenen,eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract. Current workflow languages for web services suffer from poor
support for separation of concerns. Aspect-oriented software develop-
ment is a well-known approach to improve this. In this paper, we present
an aspect-oriented extension for the WS-BPEL language that improves
on current state-of-the-art by introducing an explicit deployment con-
struct, a richer joinpoint model, and a higher-level pointcut language.
In addition, the supporting technology is compatible with existing WS-
BPEL engines.

Classification. Business process modeling and analysis, processes and
service composition

1 Introduction

Over the last years, web services [1] have been gaining a lot of popularity as
a means of integrating existing software in new environments. By composing
a number of basic web services, new web services can be created that provide
more advanced functionality. These compound web services can then be reused
in even other web services, which further facilitates software reuse.

Originally, the only way to compose web services was by manually writing
the necessary glue-code in programming languages such as C and Java. It quickly
became clear, however, that a composition of web services is more naturally cap-
tured by dedicated workflow languages [2] than by general-purpose programming
languages.

Today, the most popular workflow language with regard to the composition
of web services is the Business Process Execution Language (WS-BPEL) [3]. WS-
BPEL builds on the foundations of WSFL [4] and XLANG [5], and can be used
to specify both executable business processes and abstract business processes.
Executable processes model the behavior of one participant in a composition (i.e.
orchestration), while abstract business processes specify the externally visible
behavior of a composition (i.e. choreography). WS-BPEL processes are platform-
and transport-independent, and are expressed using XML.



1.1 Separation of Concerns

In this paper we improve the modularization capability of WS-BPEL in order
to provide a better separation of concerns [6] in the workflow specification. In
WS-BPEL (and other workflow languages, for that matter) a large number of
concerns (such as authorization and billing) cannot be cleanly separated from
the main functionality of the workflow specification. WS-BPEL processes suffer
from a problem that is named the “tyranny of the dominant decomposition” [7].
A WS-BPEL process can only be decomposed according to the control flow
of the process, and concerns that do not align with this decomposition end
up scattered across the process specification and tangled with one another. For
example, billing requires invoking some billing service each time before and after
a certain functionality in the process is provided. This makes it difficult to add,
modify, or remove such concerns. Also, because WS-BPEL processes must be
specified in a single XML file, complex processes give rise to large XML files
which can become difficult to understand, maintain and evolve.

To solve the above problem, we propose to apply aspect-oriented decomposi-
tion and composition mechanisms to WS-BPEL. Aspect-oriented software devel-
opment (AOSD) [8] has been gaining a lot of popularity as a means of improving
separation of crosscutting concerns in software. Examples of such crosscutting
concerns are security concerns such as access control and confidentiality [9], de-
bugging concerns such as logging [10] and timing contract validation [11], and
business rules such as billing [12]. The goal of AOSD is to achieve a better sepa-
ration of concerns, by allowing crosscutting concerns to be specified in separate
modules called aspects, so that adding, modifying or removing these concerns
does not require changes to the rest of the system.

Traditional aspects consist of two main parts: pointcut definitions and ad-
vices. Points in the program execution where an aspect can be applied (e.g.
method invocations in object-oriented programming) are called joinpoints. Point-
cuts select sets of joinpoints where aspects should be applied; these pointcuts can
be expressed using declarative pointcut languages. An advice specifies the con-
crete behavior that should be executed at certain joinpoints — typically before,
after or around the original behavior of the joinpoints. Inserting the behavior
defined by aspects at the correct locations in the main program is called weaving.

Initial research on AOSD has concentrated on applying its principles to the
object-oriented programming paradigm. However, as motivated by Arsanjani et
al. [13] and others [14–16], AOSD has a lot of potential in a web services context,
too.

1.2 Web Service Composition in Telecom

The research described in this paper is part of a larger research project, which
is named WIT-CASE and is performed in collaboration with Alcatel, and which
addresses composition of web services on a telecom service delivery platform. We
will therefore illustrate the motivation for our approach by providing examples
from within this context. Typical use cases for a telecom service delivery platform



include setting up and executing a multi-party conference call. Such use cases
mostly have the same general characteristics. For example, the platform needs
to check whether the user is allowed to access the functionality he has requested
before providing this functionality (authorization), and the user needs to be
billed for his usage according to some billing scheme (billing).

Both the authorization and billing concerns are typically crosscutting. There-
fore, an aspect-oriented approach can improve the modularization of web service
compositions on a telecom service delivery platform. Without support for AOSD,
nearly every WS-BPEL process on our platform would start with some autho-
rization code before executing its main functionality, and would perform some
billing functionality before and/or after certain resources are used. This means
that, when some part of the authorization or billing policies changes, all these
processes need to be modified. The presence of more than one authorization or
billing policy would even further complicate this situation.

If, on the other hand, support for AOSD is available, crosscutting concerns
such as authorization and billing can be expressed separate from the processes’
main functionality in dedicated aspects. If authorization or billing policies would
change, this would only require changes to the corresponding aspects, and not
to the main processes. If one would like to support more than one authorization
or billing policy (e.g. fixed fee billing as well as duration billing), it is sufficient
to simply implement an additional aspect.

In this paper, we propose an aspect-oriented programming extension for WS-
BPEL, named Padus, in order to provide a better separation of concerns. The
characteristics of the telecom service delivery platform and the goals of the WIT-
CASE project have had a profound impact on the design and implementation of
Padus. First of all, the overall workflow specification language should be suffi-
ciently expressive and should support creation of higher-level composition prim-
itives. Moreover, adding AOP support to WS-BPEL should be as less disruptive
as possible to the existing tool chain and should introduce as less run-time per-
formance overhead as possible. For these reasons we have chosen to follow an
approach in which the design of Padus is based on a logic-based programming
language (in order to increase expressive power and ability to construct higher-
level composition primitives) and the implementation of Padus is based on a
static transformation approach (in order to be compatible with existing tool
chain and minimize run-time performance overhead).

The paper is structured as follows. Section 2 describes our AOP language for
WS-BPEL, while section 3 describes how this language is implemented. A brief
case study is provided in section 4. We present related work in section 5 and
state our conclusions in section 6.

2 The Padus Language

We present Padus, an aspect-oriented extension to WS-BPEL, which aims to
overcome its lack of support for modularization of crosscutting concerns. It al-
lows introducing crosscutting behavior to an existing WS-BPEL process in a



modularized way. Developers can augment WS-BPEL processes with additional
behavior at specific points during their execution. These points can be selected
using a logic pointcut language, and the Padus weaver can be used to combine
the behavior of the core process with the behavior specified in the aspects. Us-
ing Padus, the complexity of the core process can be controlled by specifying
crosscutting concerns like security and billing in separate aspects.

In this section, we describe the design of the Padus language. We follow the
template for describing AOP languages proposed in AOSD-Europe’s survey on
aspect-oriented programming languages [17]. We describe the language along
five dimensions: the joinpoint model (section 2.1), the pointcut and advice lan-
guages (sections 2.2 and 2.3), the aspect modules (section 2.4), and the aspect
deployment language (section 2.5).

2.1 Joinpoint Model

Joinpoints are well-defined points during the execution of a WS-BPEL process
where extra functionality could be inserted. They are related to the activities
that are provided in WS-BPEL. Table 1 lists the kinds of joinpoints that are
available. Each type is related to a specific WS-BPEL activity, which can be
easily deduced from the type’s name. The joinpoint model does not only allow
behavioral joinpoints but also includes structural joinpoints related to structural
WS-BPEL activities (which contain one or more activities themselves).

Behavioral joinpoints Structural joinpoints

invoking replying sequencing switching
receiving assigning looping (“while”) picking
throwing terminating flowing scoping
compensating doingNothing (“empty”)

Table 1. Types of joinpoints available in Padus

Joinpoints are associated with properties relevant to that particular join-
point. Some of these properties are related to the attributes and elements of the
corresponding WS-BPEL activity. For example, table 2 provides the attributes
of “invoking” joinpoints. Additional properties specify, among others, in which
WS-BPEL process or structural activity a joinpoint occurs. Dynamic proper-
ties, like in which process instance a joinpoint occurs and the value of certain
variables, are defined too. Using these properties, one can more precisely select
interesting joinpoints.

2.2 Pointcut Language

A pointcut selects a specific set of joinpoints. Pointcuts can be used to specify the
joinpoints where additional behavior should be inserted. The pointcut language
of Padus is based on logic meta-programming [18, 19]. A pointcut can be seen as



Attribute Type Description

name String An optional name for the WS-BPEL activity
partnerLink String The partner link used by the invoke
portType String The port type used by the invoke
operation String The operation of the port type that is invoked
inputVariable String The message that should be sent
outputVariable String The variable that should contain the reply message

Table 2. Attributes of “invoking” joinpoints

invoking(Joinpoint, ‘smsService’, ‘smsServicePT’, Operation),
startsWith(Operation, ‘send’).

Listing 1. Simple pointcut that captures “invoking” joinpoints that invoke an
operation of which the name starts with “send”

a collection of constraints on the type and properties of allowed joinpoints. In
addition, a pointcut is able to expose certain information (e.g. argument values)
so that the advice can exploit this.

The pointcut language defines a predicate for each type of joinpoint. The
attributes of the predicate refer to the attributes of that specific type of joinpoint.
Table 3 shows the exposed bindings of the invoking predicate. Only the version
with the most variables is really required. The others can be written in function of
the larger one. The predicates with less variables simply offer extra convenience.

Predicate binding Description

invoking(Joinpoint, Name, PartnerLink, PortType, All allowed attributes
Operation, InputVariable, OutputVariable)

invoking(Joinpoint, Name, PartnerLink, Input and output variable
PortType, Operation) names not bound

invoking(Joinpoint, PartnerLink, PortType, Only Partnerlink, PortType
Operation) and Operation bound

Table 3. Bindings for the “invoking” predicates

By constraining the attributes of a joinpoint predicate, certain joinpoints
can be selected. Pointcuts can combine these predicates with standard predi-
cates that are available in Prolog [20], for comparing basic data types, searching
lists, etc. Pointcuts can include negations, and predicates can be combined with
conjunctions or disjunctions. The small example in listing 1 denotes a pointcut
that covers all “invoking” joinpoints of operations on the smsServicePT port
type of the smsService partner link of which the name of the operation starts
with “send”.

The pointcut language also offers predicates for constraining or exposing ad-
ditional (possibly runtime) properties of joinpoints, like for instance the process



or process instance a joinpoint occurs in, etc. Table 4 gives an overview of some
of these predicates.

Predicate Description

inProcess(Joinpoint, Process) Links a joinpoint with the process
it is defined in.

inProcessInstance(Joinpoint, ProcessInstance) Links a joinpoint with the process
instance it occurs in.

variableValue(ProcessInstance, Name, Value) Links the name of a variable to its
value in a specific process instance.

Table 4. Predicates for constraining additional properties of joinpoints

Using a logic pointcut language offers significant advantages over more tra-
ditional approaches. The pointcuts can use the full power of unification on logic
variables (by backtracking). Furthermore, since pointcuts are logic rules that
cover joinpoints, new user-defined pointcuts can be reused in the definition of
similar pointcuts. The logic engine supporting our pointcut language also allows
writing recursive pointcut definitions. The base predicates available in the point-
cut language have well chosen names, which can clearly express the intension of
the pointcuts and improve readability.

2.3 Advice Language

The advice language is used to specify how the behavior at certain joinpoints
defined by a pointcut should be altered. Similar to traditional aspect-oriented
systems, advices can either be added to the original behavior, or can replace the
original behavior. New behavior can be introduced by inserting it before or after
certain joinpoints defined by the pointcut. An around advice must be used if
existing behavior might need to be replaced.

In advices can be used to add behavior inside some activity, like for example
add an extra concurrent activity to a flow activity. This cannot be simulated
by before or after advices. In some cases, an around advice could be used as a
workaround, but this would result in significant code duplication. The in advice
can not only be used to add new activities in structural WS-BPEL activities, but
also to customize the behavior of certain WS-BPEL activities, like for example
adding variables to a scope, or adding flow links to any WS-BPEL activity.
Table 5 gives an overview of all the situations where an in advice could be used.

Advice code is defined in an XML element that specifies the type of the
advice. A pointcut describes the points in the original process to which the
advice applies. The extra behavior that should be inserted is specified using
standard WS-BPEL elements. For before, after and around advices, this is a WS-
BPEL activity. In advices can be used to insert other WS-BPEL elements too, as
specified in table 5. For around advices, the <proceed> activity could be used to
include the original behavior specified by the joinpoint. The pointcut’s attributes



Joinpoint Element Description

all types source Add the activity as source of a flow link.
target Add the activity as target of a flow link.

flowing activity Add a new parallel activity to a flow.
links Add a new link to a flow.

switching case Add a new case to a switch.
otherwise Add the otherwise element to a switch.

picking onMessage Add a new message trigger to a pick.
onAlarm Add a new timeout trigger to a pick.

scoping variable Add a variable to a scope.
correlationSet Add a correlation set to a scope.
faultHandler Add a fault handler to a scope.
compensationHandler Add a compensation handler to a scope.
eventHandler Add an event handler to a scope.

assigning copy Add a copy to an assign.
invoking correlation Add a correlation element to an invoke.

catch Add a specific catcher to an invoke.
catchAll Add a generic catcher to an invoke.
compensationHandler Add a compensation handler.

receiving correlation Add a correlation element to a receive.
replying correlation Add a correlation element to a reply.

Table 5. Pointcuts where an in advice could be used

are exposed to the advice; these can be accessed in the advice by prefixing their
name with the ‘$’ character. Listing 2 shows an example of a before advice that
logs all invocations of the smsServicePT web service. The extra behavior that
is inserted is a sequence of two activities: first, the log message containing the
invoked operation is created; then, this message is sent to the logging service.

2.4 Aspect Modules

An aspect represents one crosscutting concern. As such, aspects can contain
several before, after, in and around advices. Listing 3 shows an example as-
pect that logs the start and end of all invocations of the smsServicePT web

<before joinpoint="Jp" pointcut="invoking(Jp, ‘smsService’, ‘smsServicePT’, Operation)">
<sequence>

<assign>
<copy>

<from>Logging invocation of operation $Operation</from>
<to variable="logMsg" part="msg" />

</copy>
</assign>
<invoke partnerLink="logging" portType="log:loggingPT"

operation="logMessage" inputVariable="logMsg" />
</sequence>

</before>

Listing 2. An advice that logs all invocations of the SMS service



1 <aspect name="logSMSInvocations">
2 <using>
3 <namespace name="xmlns:log" uri="logging.example.com" />
4 <partnerLink name="logging" partnerLinkType="log:loggingLT" />
5 <variable name="logMsg" type="log:logMsg" />
6 </using>
7

8 <pointcut name="smsInvocation(Jp, Operation)"
9 pointcut="invoking(Jp, ‘smsService’, ‘smsServicePT’, Operation)" />

10

11 <advice name="logMessage(Message)">
12 <sequence>
13 <assign>
14 <copy>
15 <from>$Message</from>
16 <to variable="logMsg" part="msg" />
17 </copy>
18 </assign>
19 <invoke partnerLink="logging" portType="log:loggingPT"
20 operation="logMessage" inputVariable="logMsg" />
21 </sequence>
22 </advice>
23

24 <before joinpoint="Jp" pointcut="smsInvocation(Jp, Operation)">
25 <advice name="logMessage(‘Invoking $Operation’)" />
26 </before>
27

28 <after joinpoint="Jp" pointcut="smsInvocation(Jp, Operation)">
29 <advice name="logMessage(‘Invoked $Operation’)" />
30 </after>
31 </aspect>

Listing 3. An example aspect logging the start and end of all SMS service
invocations

service. The main sections of an aspect are the using declarations (lines 2–6),
the pointcut (lines 8–9) and advice definitions (lines 11–22), and the actual ad-
vices (lines 24–30). To allow reuse of pointcuts and advices, aspects can include
other aspect files.

Adding new behavior usually requires extending the information defined at
process-level, too. For example, adding a new invocation to a process usually
requires adding a partner link that specifies the interface of the new service, and
a new variable that will contain the message that should be sent to that service.
The <using> tag (lines 2–6) allows the definition of such information global
to the process. It may include variables, partner links, partners, fault handlers,
compensation handlers, event handlers and namespaces.

Pointcut expressions can be reused (lines 8–9) by giving them a name and
specifying the parameters, which can either be further constrained when reusing
the expression, or be referred to from inside an advice reusing the pointcut.
Defining a pointcut expression like this generates a higher-level pointcut predi-
cate that can then be used in other pointcut expressions.

The extra behavior that should be inserted in before, after, around and in
advices can be reused too (lines 11–22). The advice behavior is given a name
and can be parametrized. These parameters can be referred to from inside the



<deployment>
<!-- the following aspects need to be deployed for the selected processes -->
<aspect name="..." process="..." id="..." />
<aspect name="..." process="..." id="..." />
...
<!-- the following precedence declarations are valid for the selected process

or for all processes if no process is specified -->
<precedence [process="..."] />

<aspect id="..." [advice="before|after|around|in"] />
<aspect id="..." [advice="before|after|around|in"] />

</precedence>
...

</deployment>

Listing 4. Aspect deployment specification

advice code with their name (using the ‘$’ prefix). The named advice behavior
can be called from within advice code using the <advice> element (line 25 and
line 29).

2.5 Aspect Deployment Language

A Padus aspect deployment specifies how aspects should be applied to the base
processes and consists of two main parts: aspect instantiation and aspect com-
position. Aspect instantiation is responsible for instantiating and applying an
aspect type to a concrete process. Processes are referenced using their name.
It is also possible to select processes in a pattern-based manner using a logic
language very similar to our pointcut language. As such, it is for instance pos-
sible to select only those processes that invoke a particular service or to select
processes whose name starts with a given identifier. Listing 4 illustrates aspect
deployment in Padus.

The second part of an aspect deployment, namely the aspect composition, is
responsible for specifying the aspect precedence in case multiple aspects apply
to the same joinpoint. In case no precedence is specified, the advice is executed
in the order in which their corresponding aspects are specified. A precedence
declaration overrides this default and is able to specify precedence on a per-
advice-type basis. Aspect precedence for a before advice can thus be different
than precedence for an after advice. The precedence is also able to vary over sev-
eral deployments of the same aspect type, as it is bound to the aspect instance’s
ID and not to its type. Furthermore, the precedence specification can be limited
to certain processes only, allowing a custom precedence specification for each
process or group of processes if necessary. Similar to aspect instantiation, the
process selection can be name-based or pattern-based.



3 The Padus Implementation

3.1 General Architecture

In existing literature on aspect-oriented execution models, two main approaches
can be identified:

– Static Weaving: In a statically woven approach, the aspect and base-code
are woven (i.e. merged) before run-time on either source or byte-code level.
At runtime the aspects, like the base code, cannot be redefined, removed nor
can new aspects be added.

– Dynamic Weaving: A dynamically woven approach uses dedicated tech-
niques to allow weaving at runtime. This allows to dynamically add, remove
and redefine aspects.

We opt for a statically woven approach for the execution model of the Padus
language. Because the language is used to describe real-time processes in a tele-
com service delivery platform, performance is extremely important. In contrast
to dynamic weaving, static weaving introduces no runtime overhead. Another
important advantage is that it does not require a dedicated execution platform
(i.e. a modified WS-BPEL engine in our case), which would otherwise seriously
limit the applicability of the approach. Figure 1 illustrates the architecture of
our weaver. A WS-BPEL process is transformed based on the aspect deploy-
ment descriptions. The result is again a regular WS-BPEL process that can be
deployed on all WS-BPEL execution engines.

BPEL 
process

Aspect 
Definition

Static
Weaver

Aspect 
Deployment
Description

Resulting 
BPEL 

Process

Standard BPEL Execution Engine

Aspect 
DefinitionAspect 

Definition

Fig. 1. Padus weaver architecture



3.2 Pointcut Matching and Document Transformation

In order to match the pointcuts and transform the target WS-BPEL specifica-
tion, the following steps are taken:

– Translation: The WS-BPEL process is translated to a set of logic facts in
the Prolog language. For every WS-BPEL activity, several facts are generated
that define the equivalent activity in Prolog. There is also an explicit back-
link to the nodes in the XML tree representation of the WS-BPEL process.
This allows for a fast reverse translation process from any given activity to
the concrete XML node.

– Matching: A logic engine (SWI-Prolog) is used to find all solutions for the
pointcut rule. The result is a set of facts representing activities where the
aspect is applicable. In case the pointcut defines conditions that are to be
dynamically evaluated (such as variableValue(ProcessInstance, Name,
Value)), partial evaluation is applied to only evaluate the static part of
the pointcut. The dynamic part of the pointcut is inserted at the beginning
of the advice. If it does not evaluate to true, the advice is not executed.
Separating the dynamic part of a pointcut and inserting the conditional
advice is independent from a concrete WS-BPEL process and the result
might thus be stored for later deployments of the same aspect.

– Joinpoint Identification: All solutions for the rule are translated back to
WS-BPEL activities using the explicit back-link generated in the translation
process. The result is a set of joinpoints denoted by XPath in the WS-BPEL
XML tree where the aspect should be woven.

– Transformation: An XML transformation engine (based on XSLT) is used
to transform the WS-BPEL document at the joinpoints identified in the pre-
vious step. Depending on the concrete advice semantics, a different trans-
formation is applied. For a before advice for instance, the advice process is
inserted before the identified joinpoints. Non-WS-BPEL constructs in the
advice, such as proceed, have to be translated to valid WS-BPEL activities
as well. In case of proceed in an around advice for instance, the replaced
behavior of the joinpoint is inserted instead of the proceed activity.

4 Case Study

In this section we show how our aspect language can be used to add billing to a
multi-party conference call process. Two types of billing schemes are supported:
a fixed fee billing scheme where the end user should pay a fixed price at the end of
the conference call, and a duration billing scheme where the price is determined
based on the duration of the conference call. Three aspects are used to represent
these two billing schemes:

– A generic billing aspect (see listing 5) is used to define concepts common to
both billing schemes: the billing service and message definitions (lines 2–6),
the pointcuts representing the start and end of a conference call (lines 7–10),
and an advice for invoking the billing service (lines 11–14).



1 <aspect name="Billing">
2 <using>
3 <namespace name="xmlns:bill" uri="my.billing.uri" />
4 <partnerLink name="billing" partnerLinkType="bill:billingLT" />
5 <variable name="billingMsg" type="bill:billingMsg" />
6 </using>
7 <pointcut name="confCallStarts(Jp)"
8 pointcut="invoking(Jp, ‘ConfCallService’, ‘confCallPT’, ‘createConfCall’)" />
9 <pointcut name="confCallEnds(Jp)"

10 pointcut="invoking(Jp, ‘ConfCallService’, ‘confCallPT’, ‘closeConfCall’)" />
11 <advice name="billService">
12 <invoke partnerLink="billing" portType="bill:billingPT"
13 operation="billService" inputVariable="billingMsg" />
14 </advice>
15 </aspect>

Listing 5. Aspect defining generic billing concepts

1 <aspect name="FixedFeeBilling">
2 <include name="Billing" />
3 <after joinpoint="Jp" pointcut="confCallEnds(Jp)">
4 <sequence>
5 <assign>
6 <copy>
7 <from>1.5 EUR</from>
8 <to variable="billingMsg" part="price" />
9 </copy>

10 </assign>
11 <advice name="billService" />
12 </sequence>
13 </after>
14 </aspect>

Listing 6. Aspect implementing a billing scheme with a fixed fee

– The fixed fee billing aspect (see listing 6) introduces one advice that invokes
the billing service with a fixed price at the end of the conference call.

– In the duration billing aspect (see listing 7), a first advice (lines 6–13) stores
the start time of the conference call in a new variable (line 4), while a second
advice (lines 14–25) uses this time to calculate the price of the conference
call based on its duration and then invokes the billing service.

The logic needed for adding billing to the conference call process is now cleanly
modularized and is not scattered across the basic control flow, which is very
useful for keeping the complexity of the core functionality under control. Any of
the two billing aspects can now be combined with the conference call process, or
any other process, greatly improving reusability. The billing scheme can easily
be modified afterwards too.

The deployment descriptor in listing 8 specifies how the aspect should be
instantiated. Here we apply the FixedFeeBilling aspect to the ConferenceCall
process. Suppose a SecurityCheck aspect is used to make sure that only users
that are allowed to end the conference call can actually do so. In this case, the
SecurityCheck aspect should be applied first, to make sure that the billing only
occurs if the conference call is actually terminated. Note that in this simple



1 <aspect name="DurationBilling">
2 <include name="Billing" />
3 <using>
4 <variable name="startTime" type="xsd:time" />
5 </using>
6 <before joinpoint="Jp" pointcut="confCallStarts(Jp)">
7 <assign>
8 <copy>
9 <from expression="func:getCurrentTime()" />

10 <to variable="startTime" />
11 </copy>
12 </assign>
13 </before>
14 <after joinpoint="Jp" pointcut="confCallEnds(Jp)">
15 <sequence>
16 <assign>
17 <copy>
18 <from expression="func:calculatePrice(
19 bpws:getVariableProperty(‘startTime’), ‘0.4 EUR’)" />
20 <to variable="billingMsg" part="price" />
21 </copy>
22 </assign>
23 <advice name="billService" />
24 </sequence>
25 </after>
26 </aspect>

Listing 7. Aspect implementing a billing scheme based on duration

1 <deployment>
2 <aspect name="FixedFeeBilling" process="ConferenceCall" id="ConferenceCallBilling" />
3 <aspect name="SecurityCheck" process="ConferenceCall" id="ConferenceCallSecurity" />
4 <precedence process="ConferenceCall" />
5 <aspect id="ConferenceCallSecurity" />
6 <aspect id="ConferenceCallBilling" />
7 </precedence>
8 </deployment>

Listing 8. Aspect deployment specification

example the default precedence could be used to specify the right order in which
the aspects should be applied too, but this might not be the case anymore if
more processes and/or aspects were defined.

5 Related Work

AO4BPEL [14] is an aspect-oriented extension to WS-BPEL that allows for more
modular and dynamically adaptable web service compositions. Each WS-BPEL
activity is a potential join point. In contrast to Padus, AO4BPEL uses the lower-
level XPath pointcut language. Pointcuts are too low-level and refer directly to
paths in the document tree, which limits their reusability and makes them fragile
with respect to evolution of the base process. Furthermore, their approach does
not support an explicit aspect deployment construct nor allows for aspect reuse.
While AO4BPEL allows for aspect addition and removal while processes are



running, supporting this requires a custom-made WS-BPEL engine, which is
incompatible with the existing tool chain.

Courbis and Finkelstein [21] present an aspect-oriented language extension
very similar to AO4BPEL. They also use XPath as a pointcut language and use
a custom WS-BPEL engine for allowing dynamic aspect addition and removal.
In contrast to AO4BPEL and Padus, however, the advice language is Java.

The Web Services Management Layer (WSML) [22] uses aspects implemented
in JAsCo [23] to capture client-side web service management concerns such as
billing, transactions, selection and caching. Compositions of web services are
handled by traditional approaches such as WS-BPEL. The WSML is thus com-
plementary to our approach: Padus is able to specify process specific aspects
that reflect over the process definition while the WSML specifies service specific
aspects independent of process details.

Previous research [18] already showed the advantage of using a logic language
for both aspect declaration (defining pointcuts as logical queries) and weaver
implementation (representing the program as logical facts) in the context of
Smalltalk. The logic meta-programming approach to AOP also allows non-expert
programmers to define their own high-level, domain-specific aspect languages.

6 Conclusions and Future Work

The paper presents an extension of WS-BPEL for allowing a better separation of
concerns through aspect-oriented programming. The Padus language improves
on existing approaches by:

– Providing a rich joinpoint model consisting of all WS-BPEL activities.
– Employing a higher-level logic-based pointcut language that makes the point-

cuts less dependent on the concrete document structure. This makes the
pointcuts less fragile with respect to evolution of the WS-BPEL process.
Because of the higher-level pointcuts, reusing them becomes easier as well.

– Introducing the concept of an in advice to add new behavior to existing
elements, which extends the expressiveness of the advice language.

– Providing an explicit deployment construct that allows to specify aspect
instantiation to specific processes expressively using a logic language. As-
pect composition is tackled by an expressive precedence specification that is
able to vary depending on the aspect instances, advice types and concrete
processes.

– Remaining compatible with the existing infrastructure.

Our aspect-oriented extension for WS-BPEL is an XML-based language and
can be defined using an XML Schema [24]. But, similar to specifying a WS-
BPEL process using a graphical notation (e.g. BPMN [25]), a more user-friendly
graphical notation for aspects can be defined too. We already started on an
extension of BPMN that supports the aspect-oriented idea and that can be
translated to Padus aspects.



7 Acknowledgments

This research is partly funded by Alcatel Belgium and the Institute for the
Promotion of Innovation Through Science and Technology in Flanders (IWT-
Vlaanderen) through the WIT-CASE project.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V., eds.: Web Services: Concepts,
Architectures and Applications. Springer-Verlag, Heidelberg, Germany (2004)

2. Du, W., Elmagarmid, A.: Workflow management: State of the art vs. state of the
products. Technical Report HPL-97-90, Hewlett-Packard Labs, Palo Alto, CA,
USA (1997)

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services version 1.1 (2003) http://www.ibm.
com/developerworks/library/ws-bpel/.

4. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM (2001)
5. Thatte, S.: XLANG — web services for business process design. Microsoft (2001)

http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.
6. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Comm. ACM 15(12) (1972) 1053–1058
7. Ossher, H., Tarr, P.: Using subject-oriented programming to overcome common

problems in object-oriented software development/evolution. In: Proc. 21st Int’l
Conf. Software Engineering, IEEE Computer Society Press (1999) 687–688

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Technical Report SPL97-008 P9710042,
Xerox PARC (1997)

9. De Win, B., Joosen, W., Piessens, F.: Developing secure applications through
aspect-oriented programming. In Filman, R.E., Elrad, T., Clarke, S., Akşit, M.,
eds.: Aspect-Oriented Software Development. Addison-Wesley, Boston (2005) 633–
650

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In Knudsen, J.L., ed.: Proc. ECOOP 2001, LNCS 2072,
Berlin, Springer-Verlag (2001) 327–353

11. Vanderperren, W., Suvée, D., Jonckers, V.: Combining AOSD and CBSD in Pa-
coSuite through invasive composition adapters and JAsCo. In: Proceedings of
Net.ObjectDays 2003, Erfurt, Germany (2003) 36–50

12. D’Hondt, M., Jonckers, V.: Hybrid aspects for weaving object-oriented function-
ality and rule-based knowledge. In Lieberherr, K., ed.: Proc. 3rd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2004), ACM Press (2004) 132–140

13. Arsanjani, A., Hailpern, B., Martin, J., Tarr, P.: Web services: Promises and
compromises. Queue 1(1) (2003) 48–58

14. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In Zhang, L.J., ed.: Proceedings of the 2nd European Conference on Web Services
(ECOWS 2004), Erfurt, Germany, Springer-Verlag (2004) 168–182

15. Cottenier, T., Elrad, T.: Dynamic and decentralized service composition with Con-
textual Aspect-Sensitive Services. In: Proceedings of the 1st International Confer-
ence on Web Information Systems and Technologies (WEBIST 2005), Miami, FL,
USA (2005)



16. Verheecke, B., Vanderperren, W., Jonckers, V.: Unraveling crosscutting concerns
in web services middleware. IEEE Software 23(1) (2006) 42–50

17. Brichau, J., Haupt, M.: Survey of aspect-oriented languages and execution models.
Technical Report AOSD-Europe-VUB-01, AOSD-Europe (2005)

18. De Volder, K.: Aspect-oriented logic meta programming. In Lopes, C., Kiczales, G.,
Tekinerdoğan, B., De Meuter, W., Meijers, M., eds.: Workshop on Aspect Oriented
Programming (ECOOP 1998). (1998)

19. De Volder, K.: Type-Oriented Logic Meta Programming. PhD thesis, Vrije Uni-
versiteit Brussel (1998)

20. Deransart, P., Ed-Dbali, A., Cervoni, L., eds.: Prolog: The Standard Reference
Manual. Springer-Verlag (1996)

21. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: ICSE ’05:
Proceedings of the 27th international conference on Software engineering, New
York, ACM Press (2005) 69–77

22. Cibrán, M.A., Verheecke, B., Jonckers, V.: Aspect-oriented programming for dy-
namic web service monitoring and selection. In Zhang, L.J., ed.: Proceedings of
the 2nd European Conference on Web Services (ECOWS 2004), Erfurt, Germany,
Springer-Verlag (2004)

23. Suvée, D., Vanderperren, W.: JAsCo: An aspect-oriented approach tailored for
component based software development. In Akşit, M., ed.: Proc. 2nd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2003), ACM Press (2003) 21–29

24. Fallside, D.C., Walmsley, P.: XML Schema part 0: Primer second edition. W3C
Recommendation 28 October 2004, World Wide Web Consortium (2004) http:

//www.w3.org/TR/2004/REC-xmlschema-0-20041028/.
25. White, S.A.: Business Process Modeling Notation (BPMN) version 1.0 (2004)

http://www.bpmn.org/.


