
A Framework for Advanced Modularization
and Data Flow in Workflow Systems

Niels Joncheere, Dirk Deridder, Ragnhild Van Der Straeten,
and Viviane Jonckers

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{njonchee,dderidde,rvdstrae,vejoncke}@vub.ac.be

Abstract. Workflows have become a popular technique for describing
processes in many different application domains, including Computer
Aided Engineering (CAE). State-of-the-art workflow languages lack the
necessary modularization techniques and data flow capabilities to express
processes in a way that facilitates their design, evolution and reuse. In
this paper, we aim to tackle this problem by presenting a conceptual
framework for advanced modularization and data flow in workflow sys-
tems, which is independent of specific modeling approaches and tech-
nologies.

1 Introduction

Workflows have long been a popular technique for describing processes in a
number of application domains, such as business process management and web
service orchestration. More recently, they have started to be applied in scientific
computing and Computer Aided Engineering (CAE). Workflow languages for
each of these application domains have been developed.

As processes become more complex, mechanisms are needed to manage this
complexity in order to facilitate the processes’ design, evolution and reuse. Tra-
ditionally, workflow languages tackle this problem by allowing to decompose
workflows into separate modules such as sub-workflows. However, these modules
are often strongly tied to the workflow in which they are used, resulting in limited
reusability. In addition, most approaches do not support modularizing concerns
that crosscut a workflow (such as authentication, transaction management, and
logging), and approaches that do [1–3] are limited in their expressiveness.

In scientific computing and CAE, the volume, complexity, and heterogeneity
of data in processes is much larger than in other application domains. This means
that workflows in these domains contain much more data flow: they deal with
data transfer from persistent storage to the resources that will process the data,
partition data in preparation of parallel processing, and handle transformation
of data when different processing steps require different data formats. This data
perspective [4] is insufficiently supported by current workflow approaches.

The goal of our approach is to improve separation of concerns [5] in workflow
languages by tackling both the lack of modularization of the main concern and
the lack of modularization of crosscutting concerns [6] using a single, general
workflow construct. More specifically, we revalue the sub-workflow construct
as a powerful means for workflow modularization. Based on our collaboration
with industrial partners in Computer Aided Engineering, we also aim to provide
better support for the data perspective.

This paper presents our conceptual framework for advanced modularization
and data flow in workflow systems. Section 2 describes our modularization mech-
anism, and Section 3 describes our data flow mechanism. Section 4 presents
related work, and Section 5 states our conclusions.

2 Modularization Mechanism

Traditionally, sub-workflows are used to decompose the main concern of a work-
flow into smaller modules, thus facilitating evolution and reuse of these modules.
The main workflow contains a composite task that specifies — at design time
— which sub-workflow should be invoked. When the workflow is enacted, the
sub-workflow will be executed. Although this mechanism is a good means for
managing workflow complexity, it is not always present in popular workflow
languages such as BPEL [7].

While our approach supports this basic mechanism, it improves on it by al-
lowing sub-workflows to be attached to main workflows in a way which inverts
the flow of control: it allows specifying at which points in a main workflow a
sub-workflow should commence and cease execution, without explicitly specify-
ing this in the main workflow. Thus, we facilitate adding concerns that were not
considered when the main workflow was designed, and facilitate comprehending,
maintaining, reusing, and removing concerns that are specified using such sub-
workflows. For example, this mechanism can be used to invoke an authentication
sub-workflow before each invocation of a certain service, even though the work-
flow that invokes this service was not designed with authentication in mind. This
inversion of control is similar to traditional aspect-oriented techniques [8], but
unlike aspects, sub-workflows are not separate language constructs introduced
solely for the sake of encapsulating crosscutting concerns. Such a symmetrical [9,
10] approach reduces the number of language constructs, and is expected to fa-
cilitate the adoption of our approach in industrial environments.

In order to allow specifying such symmetrical workflow compositions, we
introduce the notion of control ports. Control ports are the entry and exit
points of a task’s control flow; each task has exactly one control input port and
one control output port. A workflow’s control flow perspective is specified by
connecting the control output port of the workflow’s start event to the control
input port of a task, and connecting the control output ports of all tasks to
the control input ports of other tasks or end events. Just like tasks, workflows
have exactly one control input and output port; these are the entry and exit
points of the workflows’ control flow. We visualize control ports by extending

the YAWL [11] notation with small circles at the sides of tasks and workflows.
Control input ports are marked with the letter I, while control output ports are
marked with the letter O. The upper part of Figure 1 shows a workflow called
WorkflowA, which has a control input port (at its left side) and a control output
port (at its right side). Additionally, all elements of the workflow, such as TaskB,
have control ports as well, which are connected in order to specify the workflow’s
control flow perspective.

WorkflowB

I O

WorkflowA

I O

Connector1:
 CONNECT WorkflowB TO WorkflowA
 REDIRECTING AT WorkflowA.TaskB.I
 RESUMING AT WorkflowA.TaskB.I

control
output
port

control
input
port

O

Start

I

End

I O

TaskA

O

Start

I

EndI O

TaskB

I O I O

I O

TaskC

TaskA TaskD

Connector2:
 CONNECT WorkflowB.TaskA TO WorkflowA

Fig. 1. Using a connector for symmetrical workflow composition (left) and for connect-
ing a task to a workflow (right)

Analogous to the way they are employed in component based software engi-
neering [12] and aspect-oriented programming [10], we introduce connectors
to connect workflows to each other. In Figure 1, Connector1 specifies that
WorkflowB needs to be connected to WorkflowA. The connector also speci-
fies that, when WorkflowA is enacted, its control flow should be redirected to
WorkflowB when it reaches the control input port of TaskB. If control flow should
be split, one should use the SPLITTING keyword instead of the REDIRECT-
ING keyword. Additionally, the connector specifies that, when the execution of
WorkflowB has finished, control flow should resume at the control input port
of TaskB. The net result of this connector is that WorkflowB will be executed
before TaskA.

In our example, control flow is redirected and resumed at the same control
port in WorkflowA. However, this need not be the case. For example, if the con-
nector would specify that WorkflowB should resume at the control output port
of TaskB, the net result of the connector would be that WorkflowB is executed
instead of TaskB. In an initial phase, our system will support all the workflows’
control ports as resuming points in order to maximize connector expressivity.
However, some resuming points may yield undesirable workflow behavior (such

as infinite loops). Therefore, future work will be directed at producing safe con-
nector patterns.

The traditional composite task construct is still available in our approach,
but we do not require the composite task to be hard-wired to a concrete workflow
at design time: a connector can be used to wire the composite task to a concrete
workflow. This reduces the coupling between a workflow that contains a com-
posite task and the concrete workflows that will implement this composite task.
In Figure 1, Connector2 specifies that TaskA in WorkflowB should be connected
to WorkflowA. When WorkflowB’s control flow reaches TaskA, WorkflowA will
be executed, and when its execution is finished, the control flow will continue
with the remainder of WorkflowB. In fact, such a connection can be made even
if TaskA is a regular task instead of a composite task. In that case, WorkflowA
would be executed instead of TaskA.

Connectors are specified separate from the workflows they connect. This
reduces the coupling between sub-workflows and main workflows, and improves
the reusability of sub-workflows by making them independent of the context
to which they might be applied. This also means that a workflow can assume
the role of sub-workflow in one composition, while assuming the role of main
workflow in another. Figure 1 illustrates this: in Connector1, WorkflowA assumes
the role of main workflow, and in Connector2, WorkflowB assumes the role of
main workflow. Of course, it would not make sense to have both connectors in
the same workflow composition, as this would yield an infinite loop.

3 Data Perspective

Most state-of-the-art workflow languages are not designed with the data per-
spective in mind. Data is typically accessible by groups of tasks using some
basic scoping mechanism, or is simply passed along with the control flow. The
data and control flow perspectives are tightly integrated, and their indepen-
dence is concealed. The concepts modeled in these perspectives, as well as their
independence get blurred and distorted. Existing workflow research [13] has rec-
ognized the need to uphold this independence. Therefore, we improve on existing
languages by specifying data flow and control flow separately.

A first concept we introduce to this end is data ports. Each task can have an
arbitrary number of data input ports and data output ports, which represent the
input and output parameters of a task, respectively. Each of a workflow’s ports
has a unique name, and specifies the types of data transfer that it supports,
which are either pass-by-value, pass-by-reference, or streaming. Depending on
the application domain, a data port can specify the type of its data (for example
using XML Schema). Analogous to tasks, workflows have an arbitrary number
of data input and output ports as well.

Secondly, we introduce a first-class data flow construct, which is visualized
as a special kind of arrow that connects the data output port of one task to
the data input port of another. The basic case of the construct specifies data
transfer between two tasks. The data flow specifies the type of transfer that will

actually be used (pass-by-value, pass-by-reference, or streaming — which should
be compatible with the connected data ports), and depending on this type,
specifies where data should be stored intermediately. For example, the data flow
can specify that a data output port’s data should be passed by reference to a
certain data input port, while storing the actual data in a certain database. A
more advanced case of the data flow construct specifies data transformation:
instead of simply transferring data, the user can specify the way in which data
should be transformed during its transfer. Using these two cases of our first-class
data flow construct, one can express all data transfer patterns defined in [4].

The upper part of Figure 2 provides an example using a workflow named
WorkflowA. Data ports are visualized by extending the YAWL notation with
small rectangles at the sides of tasks and workflows. Data input ports are
marked with the letter I, while data output ports are marked with the letter
O. WorkflowA contains a data transformation named Transformation between
the data output port of TaskA and one of the data input ports of TaskC, and an
anonymous data transfer between the data output port of TaskB and the other
data input port of TaskC. The data flows are visualized by extending the YAWL
notation with thick arrows; the transformation is differentiated from the transfer
by the square in the middle of its arrow.

WorkflowA

Task
A

Task
B

Task
C

OI

O I O I O I O I

I O I O

OI I

I O

I

Start End

Transformation

Connector:
 CONNECT WorkflowA.Transformation TO WorkflowB

Fig. 2. Data transfer and transformation

By default, the workflow’s tasks’ unconnected data ports are implicitly ex-
posed as the workflow’s data ports. This is shown in the example by the dashed
lines, which are not part of the notation. If a more advanced mapping between
the workflow’s tasks’ data ports and the workflow’s data ports is desired, it can
be specified in the workflow, but this is not visualized using the notation.

The data transformation construct greatly simplifies CAE workflows, as these
typically contain a large amount of data transformation logic. Depending on the
application domain, a specific engine for our language might support a number
of built-in transformation strategies, such as XSLT transformations for XML
data, but in general, the user can specify data transformation strategies by
using the workflow language itself: because data transformations are first-class,
data transformations can be composites, and can be connected to a workflow

using a connector. Figure 2 illustrates this scenario by showing a connector that
links Transformation to a workflow named WorkflowB, which is not shown.
WorkflowB can be any workflow that has exactly one data input port and one
data output port. When Transformation is executed, its incoming data will be
sent to WorkflowB’s data input port, and its outgoing data will be retrieved from
WorkflowB’s data output port.

4 Related Work

The Abstract Grid Workflow Language (AGWL) [14] is an interesting approach
which also identifies the need for an powerful, separate data perspective. How-
ever, the approach does not address the requirement of separation of concerns.

Data flow languages [15] have long been available as a paradigm for express-
ing computations according to its data perspective. However, existing workflow
research [13, 14] has shown that having only a single workflow perspective is in-
sufficient. Nevertheless, the data perspective of our approach can be seen as a
coarse grained data flow language where tasks are the macro actors.

In the modeling community, UML activity diagrams [16] have been developed
as a means of expressing workflows. Data flow can be modeled separate from
control flow using pins, and there is a distinction between streaming and non-
streaming data transfer. However, the approach does not consider separation of
concerns or the specific needs of data-intensive applications.

5 Conclusions

In this paper, we propose a conceptual framework for advanced modulariza-
tion and data flow in workflow systems. We describe a workflow language which
introduces four language elements: control ports, data ports, data flow, and con-
nectors. A workflow’s data flow is specified separate from its control flow by
connecting tasks’ data ports using a first-class data flow construct. Connectors
allow expressing that a task in one workflow should be executed by another work-
flow, in a way that minimizes dependencies between these workflows and thus
facilitates their independent evolution and reuse. Additionally, connectors allow
connecting data flow constructs to workflows. The inversion-of-control connec-
tor allows augmenting a workflow with concerns that were not considered when
it was designed, and again facilitates independent evolution and reuse of these
workflows.

Many of the concepts we introduce are not present in current workflow ap-
proaches. In particular, our inversion-of-control mechanism is significantly more
powerful than existing aspect-oriented approaches for workflows [1–3]. Future
work will be directed at providing a proof-of-concept implementation for our
approach.

Acknowledgements

The research presented in this paper is funded by the Research Foundation –
Flanders through the DyBroWS project.

References

1. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
Lecture Notes in Computer Science 3250 (2004) 168–182

2. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Proceedings
of the 27th International Conference on Software Engineering (ICSE 2005). St.
Louis, MO, USA, ACM Press (2005)

3. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten, R.,
Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using Padus.
Lecture Notes in Computer Science 4102 (2006) 113–128

4. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
data patterns. QUT Technical Report FIT-TR-2004-01, Queensland University of
Technology, Brisbane, Australia (2004)

5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12) (1972) 1053–1058

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Lecture Notes in Computer Science 1241
(1997) 220–242

7. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services: Version 1.1. http://www.ibm.com/
developerworks/library/specification/ws-bpel/ (2003)

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. Lecture Notes in Computer Science 2072 (2001) 327–354

9. Tarr, P., Ossher, H., Harrison, W., Stanley M. Sutton, J.: N degrees of separation:
Multi-dimensional separation of concerns. In: Proceedings of the 21st International
Conference on Software Engineering (ICSE 1999). Los Angeles, CA, USA, IEEE
Computer Society (1999) 107–119

10. Suvée, D., De Fraine, B., Vanderperren, W.: A symmetric and unified approach
towards combining aspect-oriented and component-based software development.
Lecture Notes in Computer Science 4063 (2006) 114–122

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30(4) (2005) 245–275

12. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River, NJ, USA (1996)

13. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: A meta-model for the integration
of business process modelling aspects. International Journal of Business Process
Integration and Management 2(2) (2007) 120–131

14. Fahringer, T., Pllana, S., Villazon, A.: AGWL: Abstract Grid Workflow Language.
Lecture Notes in Computer Science 3038 (2004) 42–49

15. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming
languages. ACM Computing Surveys 36(1) (2004) 1–34

16. Object Management Group: UML superstructure, version 2.1.2. http://www.omg.
org/spec/UML/2.1.2/ (2007)

