
Uniform Modularization of Workflow Concerns
using Unify

Niels Joncheere? and Ragnhild Van Der Straeten

Vrije Universiteit Brussel
Software Languages Lab

Pleinlaan 2, 1050 Brussels, Belgium
{njonchee,rvdstrae}@vub.ac.be

Abstract. Most state-of-the-art workflow languages offer a limited set
of modularization mechanisms. This typically results in monolithic work-
flow specifications, in which different concerns are scattered across the
workflow and tangled with one another. This hinders the design, the
evolution, and the reusability of workflows expressed in these languages.
We address this problem by introducing the Unify framework, which
supports uniform modularization of workflows by allowing all workflow
concerns — including crosscutting ones — to be specified in isolation of
each other. These independently specified workflow concerns can then
be connected to each other using a number of workflow-specific connec-
tors. We discuss the interaction of the most invasive connector with the
workflows’ control flow and data perspectives. We instantiate the frame-
work towards two state-of-the-art workflow languages, i.e., WS-BPEL
and BPMN.

1 Introduction

Workflow management systems have become a popular technique for automating
processes in many domains, ranging from high-level business process manage-
ment to low-level web service orchestration. A workflow is created by dividing
a process into different activities, and by specifying the ordering in which these
activities need to be performed. This ordering is called the control flow perspec-
tive.

Separation of concerns [1] is a general software engineering principle that
refers to the ability to identify, encapsulate, and manipulate only those parts of
software that are relevant to a particular concept, goal, or purpose. These parts,
called concerns, are the primary motivation for organizing and decomposing
software into manageable and comprehensible modules.

Realistic workflows consist of several concerns, which are connected in order
to achieve the desired behavior. However, if all of these concerns need to be
specified in a single, monolithic workflow specification, it will be hard to add,

? Funded by the Belgian State – Belgian Science Policy through the Interuniversity
Attraction Poles program.

maintain, remove or reuse these concerns. Although most workflow languages
allow decomposing workflows into sub-workflows, this mechanism is typically
aimed at grouping activities instead of facilitating the independent evolution
and reuse of concerns. Moreover, a workflow can only be decomposed according
to one dimension with this construct, and concerns that do not align with this
decomposition end up scattered across the workflow and tangled with one an-
other. Such concerns are called crosscutting concerns [2]. These problems have
been discussed in related work by ourselves [3, 4] and others [5–7], where they are
mainly tackled using aspect-oriented programming for workflows. Nevertheless,
the problems are not yet fully addressed by the proposed solutions.

The goal of our current solution is to facilitate independent evolution and
reuse of all workflow concerns, i.e., not merely crosscutting concerns. This can
be accomplished by improving the modularization mechanisms offered by the
workflow language. We propose an approach called Unify which provides a set of
workflow-specific modularization mechanisms that can be readily employed by a
wide range of existing workflow languages. Unify facilitates specifying workflow
concerns as separate modules. These modules are then composed using versatile
connectors, which specify how the concerns are connected. The main contribu-
tions of Unify are the following:

1. Existing research on modularization of workflow concerns is aimed at only
modularizing crosscutting concerns [6, 7, 3], or at only modularizing one par-
ticular kind of concern, such as monitoring [8]. Unify, on the other hand,
aims to provide a uniform approach for modularizing all workflow concerns.

2. Existing aspect-oriented approaches for workflows are fairly straightforward
applications of general aspect-oriented principles, and are insufficiently fo-
cused on the concrete context of workflows. Unify improves on this by al-
lowing workflow concerns to connect to each other in workflow-specific ways,
i.e., the connector mechanism supports a number of dedicated concern con-
nection patterns that are not supported by other approaches.

3. Unify is designed to be applicable to a wide range of concrete workflow lan-
guages. This is accomplished by defining its connector mechanism in terms
of a general, extensible base language meta-model.

4. Unify defines a clear semantics for its modularization mechanism. This fa-
cilitates the application of existing workflow verification techniques.

5. The Unify implementation can either be used as a separate workflow engine,
or as a pre-processor that is compatible with existing workflow engines.

The structure of this paper is as follows. Section 2 specifies the motivation for
Unify, and introduces a running example. Section 3 provides an initial descrip-
tion of our approach by showing how the running example could be developed
from scratch when using Unify. Sections 4 and 5 introduce the meta-model for
our base language and connector mechanism, respectively. Section 6 discusses
the interaction of our connector mechanism with the control flow and data per-
spectives, and discusses the semantics of our connector mechanism. Section 7
describes our implementation, Section 8 gives an overview of related work, and
Section 9 states our conclusions and outlines future work.

2 Motivation

Consider the workflow in Figure 1, which is a simplified version of an automated
order handling process for an online book store. The workflow is visualized using
the Business Process Model and Notation (BPMN) [9]; a brief overview of this
notation is given in the legend at the bottom right of the figure. The workflow
starts at the start event at the top of the figure. It first performs the Login and
SelectBooks activities in parallel. The workflow then proceeds with the Spec-
ifyOptions activity, after which the control flow is split again. A first branch
contains the Pay and SendInvoice activities, while a second branch contains the
ProcessOrder and Ship activities. The VerifyBankAccount activity synchronizes
both branches. The last activity to be executed is the ProcessReturns activity, af-
ter which the workflow ends at the end event. Please note that only the contents
of the SelectBooks, Pay, and Ship activities are shown, whereas the contents of
other activities are omitted in the interest of brevity.

OrderHandling

SelectBooks

Select
Book

Confirm

AddBook
OrContinue

Confirm
OrContinue

Save
Preference

Report

Add
Book

Save
Preference

Login

Specify
Options

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment
Method

Wire
Transfer
Payment

Payment
Method

Report

Report

Report

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Report

Report

Process
Order

Process
Returns

Legend

Start event

End event

AND-split (one incoming
transition) or AND-join
(one outgoing transition)

XOR-split (one incoming
transition) or XOR-join
(one outgoing transition)

Transition

Activity

Send
Invoice

Verify
Bank

Account

Fig. 1. Example order handling workflow, expressed using BPMN

Like any realistic software application, the workflow in Figure 1 consists of
several concerns — parts that are relevant to a particular concept, goal, or pur-
pose — which are connected in order to achieve the workflow’s desired behavior.
The main concern is obviously order handling. This concern has already been
hierarchically decomposed into sub-concerns — such as book selection, payment
and shipping — using the composite activity construct. Other concerns are pref-
erence saving, reporting and bank account verification, which occur at various
places across the workflow. The general software engineering principle of sepa-
ration of concerns argues that applications should be decomposed into different
modules in such a way that each concern can be manipulated in isolation of other
concerns. However, many current workflow languages do not allow decomposing
workflows into different modules. For example, a workflow expressed using WS-
BPEL [10] (the de facto standard in workflow languages) is a single, monolithic
XML file that cannot be straightforwardly divided into sub-workflows. This lack
of modularization mechanisms makes it hard to add, maintain, remove, or reuse
concerns. In order to improve separation of concerns in workflows, workflow
languages should allow concerns to be specified in isolation of each other.

However, allowing concerns to be specified in isolation of each other is not
sufficient: in order to obtain the desired workflow behavior, workflow languages
should also provide a means of specifying how a workflow’s concerns are con-
nected to each other.

In existing workflow languages, the only kind of connection that is supported
is typically the classic sub-workflow pattern: a main workflow explicitly specifies
that a sub-workflow should be executed. The choice of which sub-workflow is to
be executed is made at design time, and it is hard to make a different choice
afterwards. By delaying the choice of which sub-workflow is to be executed, the
coupling between main workflow and sub-workflow is lowered, and separation of
concerns is improved. In the workflow in Figure 1, one could for example vary the
behavior of the workflow by deploying a different Pay sub-workflow in different
situations.

A second kind of connection between concerns is useful when concerns cross-
cut a workflow: some concerns cannot be modularized cleanly using the sub-
workflow decomposition mechanism, because they are applicable at several loca-
tions in the workflow. The reporting concern, for example, is present at several
locations in the workflow in Figure 1. The sub-workflow construct does not solve
this problem, since sub-workflows are called explicitly from within the main
workflow. This makes it hard to add, maintain, remove or reuse such crosscut-
ting concerns. This problem has been observed in general aspect-oriented re-
search [2]. Aspect-oriented extensions to WS-BPEL, such as AO4BPEL [6] and
Padus [3], allow specifying crosscutting concerns in separate aspects. An aspect
allows specifying that a certain workflow fragment, called an advice, should be
executed before, after, or around a certain set of activities in the base workflow.
In the workflow in Figure 1, one could for example specify that the Report ac-
tivity needs to be performed after the Confirm activity and after each of the
three Payment and two Ship activities, without explicitly invoking the Report

activity at each of those places. However, these aspect-oriented extensions use a
new language construct for specifying crosscutting concerns, i.e., aspects. This
means that concerns which are specified using the aspect construct can only be
reused as an aspect, and not as a sub-workflow. On the other hand, concerns
which are specified using the sub-workflow construct can only be reused as a
sub-workflow, and not as an aspect.

Moreover, the aspect-oriented extensions mentioned above only support the
basic concern connection patterns (before, after, or around) that were identified
in general aspect-oriented research, and do not sufficiently consider the specifics
of the workflow context. They lack support for other patterns such as parallelism
and choice. For example, the before, after or around patterns do not provide an
elegant way of specifying that the SavePreference activity should be performed
in parallel with the SelectBook and AddBook activities. Furthermore, it is com-
pletely impossible to specify more advanced connections between concerns, e.g.,
specifying that the VerifyBankAccount activity should be executed after the Pay
activity has been executed and before the Ship activity is executed, which would
thus synchronize the two parallel branches by introducing a new AND-split and
-join in the order handling workflow.

Finally, the aspect-oriented extensions mentioned above are all targeted at
WS-BPEL, and cannot be applied easily to other languages. Each of these ap-
proaches also favors a specific implementation technique; for example, AO4BPEL
can only be executed using a modified WS-BPEL engine, and Padus can only
be used as a pre-processor. More variability in terms of the applicable languages
and possible implementation techniques would make a modularization approach
more widely applicable.

3 Developing a Workflow using Unify

There are two main scenarios for applying Unify to workflow development. In the
first scenario, Unify is used to improve a workflow that has already been devel-
oped using an existing workflow language, but without any regard for separation
of concerns. Unify could then be used to decompose the existing workflow into
a number of different modules, which each correspond to a concern, and which
are connected to each other in order to achieve the original behavior. We will
not consider this first scenario in this paper. The second scenario assumes that a
developer is creating a new workflow from scratch, perhaps with a library of pre-
viously implemented concerns at his disposal. In this section, we will introduce
Unify using this second scenario.

The first step in developing a workflow using Unify is to identify its concerns.
In the example from Figure 1, these are, among others, order handling, book
selection, payment, shipping, preference saving, and reporting. Unify promotes
implementing a workflow’s concerns as separate modules.1 This can be achieved
using the composite activity construct. Figure 2 shows how the concerns that

1 Deciding which concerns should be modularized is partly a matter of personal pref-
erence, and is not the focus of our research.

were mentioned in the previous section could be specified separately. Note that
each of the composite activities in Figure 2 contains less activities than the
corresponding composite activity in Figure 1. The Unify base language, which
is discussed in Section 4, defines the abstract syntax of our workflow concerns.

OrderHandling

Specify
Options

Process
Returns

Login

Select
Books

Pay

Process
Order Ship

SelectBooks

Select
Book Confirm

AddBook
OrContinue

Confirm
OrContinue

Add
Book

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment
Method

Wire
Transfer
Payment

Payment
Method

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Save
Preference Report

Verify
Bank

Account

Send
Invoice

Fig. 2. Independently specified workflow concerns

The advantage of specifying workflow concerns as separate composite activ-
ities is better separation of concerns: the different parts of a concern are no
longer scattered across the workflow(s), or tangled with one another. After the
concerns have been identified and implemented (or retrieved from a library of
previously implemented concerns), the connections between the concerns should
be specified. We identify two main categories of connections between concerns:

– Anticipated concern connections are concern connections that are ex-
plicitly anticipated by one of the concerns: this concern is aware, at design
time, of the fact that it will connect to another concern at a certain point
in its execution.

– Unanticipated concern connections are concern connections that are
not explicitly anticipated by the concerns: the concerns are not aware of the
fact that they will connect to each other at a certain point in their execution.

An example of the former is apparent in the OrderHandling concern in Fig-
ure 2: this concern contains, among others, the SelectBooks, Pay and Ship ac-
tivities, which will need to be realized by connecting them to the SelectBooks,
Pay and Ship concerns that are shown in the middle of the figure.

An example of the latter is present in Figure 2 as well: neither the SelectBooks,
Pay nor Ship concerns contain any reference to the Report concern, whereas an
unanticipated concern connection can be made between the Report concern and
those three concerns.

Unify allows specifying both anticipated and unanticipated connections using
its connector construct. In our example, the following connectors can, among
others, be used to connect the different concerns:

1. An activity connector can be used to specify that the SelectBooks activity
in the OrderHandling concern should be executed by executing the Select-
Books concern (and likewise for the Pay and Ship activities and concerns).
Thus, activity connectors allow hierarchically decomposing workflows into
different concerns.

2. An after connector can be used to specify that the Report concern should
be executed after the Confirm activity in the SelectBooks concern, after
the three Payment activities in the Pay concern, and after the two Ship
activities in the Ship concern. Thus, after connectors allow expressing the
after pattern that is currently offered by aspect-oriented approaches.

3. A parallel connector can be used to specify that the SavePreference con-
cern should be executed in parallel with the SelectBook and AddBook activ-
ities in the SelectBooks concern. Thus, parallel connectors allow expressing
a pattern that is not currently offered by aspect-oriented approaches.

4. A free connector can be used to specify that the VerifyBankAccount con-
cern should be executed after the OrderHandling concern’s Pay activity has
been executed and before its Ship activity is executed. Thus, free connectors
allow invasively changing a concern’s control flow by introducing additional
splits and joins, e.g., in order to synchronize two parallel branches.

Activity connectors express anticipated concern connections, while the other
connectors express unanticipated concern connections. The Unify connector mech-
anism, which offers other connectors in addition to the ones mentioned above,
and which is discussed in Section 5, defines the abstract syntax of our connectors.

We have defined a textual concrete syntax for our connectors, which is avail-
able in Backus–Naur form at [11]. Listing 1 shows how the above activity, after,
and free connectors can be expressed using this syntax. If one would apply all
the above connectors to the concerns of Figure 2, one would obtain the workflow
of Figure 1.

4 The Unify Base Language

Unify is designed to be applicable to a range of concrete workflow languages,
as long as they conform to a number of basic assumptions. These assumptions
are expressed as a meta-model for our workflow concerns. We do not restrict
ourselves to any particular concrete workflow language as long as it can be
defined as an extension to this meta-model. The meta-model allows expressing
arbitrary workflows [12], i.e., workflows whose control flow is not restricted to

SelectBooksConnector:
CONNECT OrderHandling.SelectBooks TO SelectBooks

ReportConnector:
CONNECT Report AFTER activity("SelectBooks\.Confirm|Pay\..*Payment|Ship\.ShipBy.*")

VerifyBankAccountConnector:
CONNECT VerifyBankAccount
AND-SPLITTING AT controlport(OrderHandling.Pay.ControlOut)
JOINING AT controlport(OrderHandling.Ship.ControlIn)

Listing 1. Example activity, after, and free connectors

a predefined set of control flow patterns, and is therefore also compatible with
more restricted workflows such as structured workflows.

Figure 3 provides the meta-model for our workflow concerns. This meta-
model does not contain the Unify connector mechanism, which is given in Sec-
tion 5. The complete Unify meta-model is the union of these two meta-models.
The meta-models are expressed using UML, with well-formedness constraints
specified in OCL.

Transitiondestination

CompositeActivity

AtomicActivity

name
condition

ControlPort

ControlInputPort

ControlOutputPort

Activity

0..*

0..*

0..1

StartEvent

EndEvent

0..*

parent

children

controlIn controlOut
{ordered}

Join

Split

AndSplit

XorSplit

AndJoin

XorJoin

0..1 0..1 0..1 0..1andJoin xorJoinxorSplitandSplit

... corresponds to ... ▶

... corresponds to ... ▶

ControlNode

name
Node

Event

source

11 0..1 0..1

context StartEvent:
self.controlIn->size() = 0
and self.controlOut->size() = 1

context EndEvent:
self.controlIn->size() = 1
and self.controlOut->size() = 0

context Activity:
self.controlIn->size() = 1
and self.controlOut->size() = 1

context Split:
self.controlIn->size() = 1
and self.controlOut->size() > 0

context Join:
self.controlIn->size() > 0
and self.controlOut->size() = 1

parent parent1 1

transition transition

context CompositeActivity:
self.children->count(c | c.oclIsTypeOf(StartEvent)) = 1
and self.children->count(c | c.oclIsTypeOf(EndEvent)) = 1
and self.children->forAll(c1, c2 |
 c1 <> c2 implies c1.name <> c2.name)

context Node:
self.controlIn->union(self.controlOut)->forAll(c1, c2 |
 c1 <> c2 implies c1.name <> c2.name)

Fig. 3. The Unify base language meta-model

A workflow concern is modeled as a CompositeActivity. Each CompositeActiv-
ity has the following children: (1) A StartEvent, which represents the point where

the CompositeActivity ’s execution starts. (2) An EndEvent, which represents the
point where the CompositeActivity ’s execution ends. (3) Any number of Activi-
ties, which are the units of work that are performed by the CompositeActivity.
(4) Any number of ControlNodes, which are used to route the CompositeActiv-
ity ’s control flow. (5) One or more Transitions, which connect the StartEvent,
the EndEvent, the Activities and the ControlNodes to each other.

An Activity is either a CompositeActivity or an AtomicActivity. Nested Com-
positeActivities can be used to hierarchically decompose a concern, similar to the
classic sub-workflow decomposition pattern. Each Activity has a name that is
unique among its siblings in the composition hierarchy, and has one ControlIn-
putPort and one ControlOutputPort. A ControlInputPort represents the point
where control enters an Activity, while a ControlOutputPort represents the point
where control exits an Activity. Each ControlPort has a name that is unique
among its siblings. Within a CompositeActivity, the StartEvent is used to spec-
ify where the CompositeActivity ’s execution should start when its ControlInput-
Port is triggered. The EndEvent is used to specify where the CompositeActivity ’s
execution should finish, and will cause the CompositeActivity ’s ControlOutput-
Port to be triggered. Thus, a StartEvent only has a ControlOutputPort, and an
EndEvent only has a ControlInputPort.

Transitions define how control flows through a CompositeActivity. This is
done by connecting the ControlOutputPorts of the CompositeActivity ’s Nodes
to ControlInputPorts. ControlNodes can be used to route the flow of control,
and are either AndSplits, XorSplits, AndJoins or XorJoins. A Split may have a
corresponding Join. Together, Transitions and ControlNodes define a Compos-
iteActivity ’s control flow perspective.

The Unify base language meta-model does not aim to support every possi-
ble control flow pattern that has been identified in existing literature, as our
research focuses on the expressiveness of the modularization mechanism rather
than on the expressiveness of the individual modules. The meta-model supports
the basic control flow patterns [13], which are sufficient for expressing most work-
flows. It does not aim to support more advanced patterns such as cancellation
and multiple instances. Due to the generic nature of the Unify base language
meta-model, the cores of most workflow languages are compatible with it. We
have extended the meta-model towards the cores of the WS-BPEL and BPMN
workflow languages.

5 The Unify Connector Mechanism

The Unify connector mechanism is based on aspect-oriented principles [2]. It
allows adding the functionality defined by a certain workflow concern (which
is modeled as a CompositeActivity) at certain locations in another workflow
concern. In aspect-oriented terminology, the former concern is the advice, while
the latter is the base concern. The locations where the advice is added are called
joinpoints, and are either the base concern’s activities, splits, or control ports.
The process of adding the functionality to the base concern is called weaving.

Unify promotes separation of concerns by allowing workflow concerns to be
specified in isolation of each other, as separate CompositeActivities. These can
be executed separately, or can be connected to other concerns using connec-
tors. Figure 4 shows the meta-model for the Unify connector mechanism. In the
interest of brevity, the definition of the CompositeActivity ’s allNodes and allCon-
trolPorts queries are omitted. These queries return the set of nodes and control
ports, respectively, obtained by the transitive closure of the children relation.

ActivityConnector

splittingType
FreeConnector

Activity

Before
Connector

After
Connector

Around
Connector

splitPointcut
InConnector

name
condition

ControlPort

Composition

name
Connector

InversionOfControl
Connector

activityPointcut

Basic
InversionOfControl

Connector

Split

1

baseConcern

0..*

connectors
{ordered}

0..*

1..*

0..*

1 advice

/split 0..*

0..*

0..*
/activity

activity
1

0..*

0..*

0..* 0..*

joiningsplitting

1 1

executedActivity
1

0..*

context ActivityConnector:
self.composition.baseConcern
 ->allNodes()
 ->includes(self.activity)

composition

context BasicInversionOfControlConnector:
self.composition.baseConcern
 ->allNodes()->includes(self.activity)

context InConnector:
self.composition.baseConcern
 ->allNodes()
 ->includes(self.split)

context FreeConnector:
self.composition.baseConcern
 ->allControlPorts()->includes(self.splitting)
and self.composition.baseConcern
 ->allControlPorts()->includes(self.joining)

CompositeActivity

Parallel
Connector

Choice
Connector

Fig. 4. The Unify connector language meta-model

A Composition specifies which CompositeActivity is its base concern, and
which Connectors are to be applied to it. The set of Connectors is ordered, and
the connectors will be applied according to this ordering.

Connectors can be used to add functionality at certain points in a concern.
They can be divided into two categories: ActivityConnectors and InversionOf-
ControlConnectors. In a traditional workflow language, a workflow can be di-
vided into several levels of granularity through the use of sub-workflows. Con-
trol passes from the main workflow into sub-workflows and back, with the main
workflow specifying when the sub-workflow should be executed. An ActivityCon-
nector allows expressing that a certain Activity inside a certain concern should
be implemented by executing another Activity, which thus acts as a sub-concern.
By specifying this link in a separate connector instead of inside the concern, we
reduce coupling between the concern and the sub-concern, thus promoting reuse.

InversionOfControlConnectors invert the traditional passing of control from
main workflow into sub-workflows: they specify that a certain concern should be
adapted, while this concern is not aware of this adaptation. In this way, such

connectors can be used to add concerns that were not anticipated when the
concern to which they are applied was created.

Joinpoints are well-defined points within the specification of a concern where
extra functionality — the advice — can be inserted using an InversionOfControl-
Connector. Joinpoints in existing aspect-oriented approaches for workflows are
either every XML element of the workflow definition [6] or every workflow activ-
ity [3]. As is shown in Table 1, our approach supports three kinds of joinpoints:
Activities, Splits, and ControlPorts. The joinpoint model is static, which has the
advantage of allowing us to define a clear weaving semantics (see Section 6.3).

Advice type Joinpoint

before Activity
after Activity
around Activity
parallel Activity
choice Activity
in Split
free ControlPort

Table 1. Advice types and joinpoints

Activity pointcuts

activity(identifierpattern)
compositeactivity(identifierpattern)
atomicactivity(identifierpattern)

Split pointcuts

split(identifierpattern)
andsplit(identifierpattern)
xorsplit(identifierpattern)

Control port pointcuts

controlport(identifier)
controlinputport(identifier)
controloutputport(identifier)

Table 2. Pointcut predicates

Pointcuts are expressions that resolve to a set of joinpoints, and are used
to specify where in the base concern the connector should add its functional-
ity. Because all Activities, Splits and ControlPorts have names that are unique
among their siblings, every joinpoint can be uniquely identified by prepending
the name of the Activity, Split or ControlPort with the names of their parents.
This allows specifying sets of joinpoints as identifier patterns. Pointcuts can be
expressed using the predicates in Table 2.

There are seven kinds of InversionOfControlConnectors, one for each of the
advice types listed in Table 1.

BeforeConnectors, AfterConnectors, and AroundConnectors allow inserting
a certain Activity before, after, or around each member of a set of Activities in
another concern. These correspond to the classic before, after, and around advice
types that are common in aspect-oriented research.

ParallelConnectors and ChoiceConnectors allow adding a parallel or alterna-
tive Activity to each member of a set of Activities in another concern. These are
novel advice types that have not yet been considered in aspect-oriented research.

InConnectors allow adding an Activity as an extra branch to an existing
Split. These are similar to Padus’s in advice type [3].

FreeConnectors allow (AND- or XOR-) splitting a concern’s control flow into
another Activity at a certain control port, and joining the concern at another
control port. These control ports are specified using two pointcuts: the splitting
pointcut and the joining pointcut, respectively. The splitting pointcut specifies
where the concern’s control flow will be split into the advice activity, and the
joining pointcut specifies where the concern will be joined. FreeConnectors are
more general than Parallel-, Choice-, and InConnectors: Parallel- and Choice-
Connectors allow adding a parallel or alternative Activity to an existing Activity
and InConnectors allow adding an Activity as an extra branch to an existing
Split, whereas FreeConnectors allow more freedom in where the control flow of
the base concern is split into the advice concern, and where the advice concern
joins the control flow of the base concern.

In order to widen the applicability of our approach, our connector mechanism
is defined in terms of our base language meta-model, which may be extended
towards different concrete workflow languages. Thus, we assume that there are
no prohibitive semantic differences between the way in which these languages’
concepts are mapped to our meta-model. As there is a consensus on the semantics
of the basic control flow patterns within the workflow community, this seems to
be a safe assumption. The way in which semantic details may be added to our
approach is an interesting avenue for future work, and will become more relevant
when more advanced control flow patterns are added to the base language meta-
model.

6 Discussion

6.1 Interaction with the Control Flow Perspective

The connector mechanism described above allows invasively changing a base
concern by connecting other concerns to it. In this subsection, we focus on the
effects of the connector mechanism on a base concern’s control flow. Our goal
here is to prevent that connecting a well-behaved concern to a well-behaved
base concern results in a composition that is not well-behaved. A concern is
well-behaved if it can never deadlock nor result in multiple active instances of
the same activity [12].

Before-, After-, Around-, Parallel- or ChoiceConnectors cannot negatively
influence a base concern’s control flow because they merely result in the exe-
cution of some extra behavior around the joinpoint activity. Thus, they cannot
influence any part of the base concern’s control flow other than the execution
of the joinpoint activity itself. InConnectors cannot negatively influence a base
concern’s control flow because they merely result in the addition of an extra
branch to an existing split. Thus, they cannot influence any part of the base
concern’s control flow other than the execution of the split itself. Therefore, we
will only discuss the effects of the FreeConnector.

Existing research [12] considers three kinds of workflows with respect to the
structure of their control flow: arbitrary workflows, structured workflows, and

restricted loop workflows. In general, the Unify base language allows expressing
arbitrary workflows. However, a specific extension of the Unify meta-model may
be more restrictive. Therefore, we restrict the FreeConnector depending on the
kind of workflows that is supported by the current extension.

Arbitrary Workflows. Intuitively, arbitrary workflows are workflows in
which a split does not need to have a corresponding join. There is no guarantee
that every arbitrary workflow is well-behaved; deciding whether a given arbitrary
workflow is well-behaved requires the use of verification techniques [12].

Using a free connector to connect a well-behaved arbitrary workflow concern
to a well-behaved arbitrary base workflow concern may give rise to a compo-
sition that is not well-behaved, but it is not possible to prevent this without
introducing structure into the arbitrary workflow concerns. Therefore, we do
not introduce any restrictions on the free connector when it is used to connect
arbitrary workflow concerns. However, the semantics of our connector mecha-
nism (see Section 6.3) allows applying the same verification techniques that are
used to decide whether the connected workflow concerns are well-behaved to the
composition of these workflow concerns, and the connector mechanism thus does
not introduce any new challenges in this regard.

Structured Workflows. Intuitively, structured workflows are workflows in
which every AND-split has a corresponding AND-join, and every XOR-split has
a corresponding XOR-join. Thus, each split and its corresponding join consti-
tute a block structure, and control can only enter or exit this block structure
through the join or split. Control can also not cross the different branches of
the block structure. These restrictions guarantee that a structured workflow is
well-behaved [12].

Because free connectors insert a new split and and a new join into a base
workflow concern in order to execute another workflow concern as an additional
branch, this new branch may make a structured base workflow concern unstruc-
tured. In order to prevent this, the splitting and joining control ports of a free
connector must be part of the same branch of the same block structure in case
of structured workflows. Note that this restriction precludes the use of the free
connector that was introduced in Section 2 in order to synchronize two parallel
branches: as the splitting and joining joinpoints of this free connector are located
in different branches of the same block structure, this connector is disallowed
when the current extension only supports structured workflows.

Restricted Loop Workflows. Intuitively, restricted loop workflows are
workflows in which only loops need to be structured (i.e., a split must only have
a corresponding join if it introduces a loop in the workflow). Thus, only loops
constitute block structures. Restricted loop workflows are less expressive than
arbitrary workflows and more expressive than structured workflows. Depending
on the implementation of the underlying workflow engine, it can be guaranteed
that restricted loop workflows are well-behaved [12]. Similar to our approach for
structured workflows, we restrict the free connector in case of restricted loop
workflows: the splitting and joining control ports of a free connector must be
part of the same branch of the same block structure.

The above restrictions aim to prevent undesirable effects of using the Unify
connector mechanism. One can also envision approaches that detect undesirable
effects. For example, in previous work [14] we have designed and implemented
a means of expressing and statically verifying control flow policies for Unify
workflows.

6.2 Interaction with the Data Perspective

In addition to effects on the control flow perspective of the connected workflow
concerns, the connector mechanism has effects on the data perspective of the
connected workflow concerns. For example, a connected workflow concern may
reference a variable that is not defined at the place where it is woven. The effects
of the connector mechanism on the data perspective depend on the approach that
is used by the specific extension to the Unify meta-model to pass data from one
activity to another. Existing research [15] has identified the following approaches:
integrated control and data channels, distinct control and data channels, and no
data passing. We assume that both of the connected workflow concerns use the
same approach.

Integrated Control and Data Channels. In this approach, control flow
and data are passed simultaneously between activities, and transitions are anno-
tated with which data elements must be passed. Activities can only access data
that has been passed to them by an incoming transition. Given two workflow
concerns that use this approach, we must make sure that the weaving of the
two workflow concerns results in a correct composition with regard to the data
elements. Therefore, a connector must specify which data elements should be
passed from the base workflow concern to the other workflow concern and back.
These data elements must be accessible at the joinpoint. The weaving process
will generate transitions from the base workflow concern to the other workflow
concern and back, and annotate these transitions with the data elements to be
passed, resulting in a correct composition.

Distinct Control and Data Channels. In this approach, data is passed
between activities via explicit data links that are distinct from control flow
links (i.e., transitions). Therefore, a connector must specify which data elements
should be passed from which activities in the base workflow concern to the
other workflow concern and back. The weaving process will generate transitions
between the workflow concerns as usual, but will also generate distinct data links
from the specified activities in the base workflow concern to the other workflow
concern and back, resulting in a correct composition.

No Data Passing. In this approach, activities share the same data elements,
typically via access to some common scope. Thus, no explicit data passing is
required. In order to implement our connector mechanism, we could merely weave
a workflow concern into the base workflow conern without any regard to the data
perspective. The activities of the former workflow concern could then access all
the data elements that are accessible at the joinpoint. However, this would be
undesirable as it would amount to dynamic scoping: a woven workflow concern
might execute correctly at one joinpoint, and not at another, depending on which

variables are accessible. Therefore, a connector must specify the data elements
that are expected from the base workflow concern, and how these map to the
data elements used in the other workflow concern. The weaving process can then
verify whether all data is correctly mapped, and copy the data elements from the
base workflow concen to the other workflow concern according to this mapping.

The solutions for each of these three approaches can be defined as extensions
to the Unify meta-model. In the context of our extension towards WS-BPEL,
we have already defined the extension for the no data passing approach. This
extension encompassed associating every CompositeActivity with a Scope, which
defines any number of Variables. This information can then be used by the
weaving process.

6.3 Semantics

Because inversion-of-control connectors can invasively change the behavior of a
concern by connecting another concern to it at an unanticipated location, it is
important that the semantics of these connectors is clearly defined. Therefore,
we have defined the semantics of the connector weaving using the graph trans-
formation formalism [16]. In the interest of brevity, this section briefly discusses
this semantics. We refer the reader to [17] for a complete description of our
connector weaving semantics.

The semantics of a connector, which connects an workflow concern to a base
workflow concern, is given by constructing a new concern that composes the base
concern and the other concern according to the connector type and the pointcut
specification. This is accomplished using graph transformation rules that work
on the abstract syntax of the Unify base language.

A graph consists of a set of nodes and a set of edges. A typed graph is a
graph in which each node and edge belong to a type defined in a type graph. An
attributed graph is a graph in which each node and edge may contain attributes
where each attribute is a (value, type) pair giving the value of the attribute and
its type. Types can be structured by an inheritance relation.

A graph transformation rule is a rule used to modify a host graph, G, and
is defined by two graphs (L, R). L is the left-hand side of the rule representing
the pre-conditions of the rule and R is the right-hand side representing the post-
conditions of the rule. The process of applying the rule to a graph G involves
finding a graph monomorphism, h, from L to G and replacing h(L) in G with
h(R) (more details can be found in [16]).

In our approach, the type graph represents the meta-model shown in Figure 3.
The translation of this meta-model to a type graph is straightforward: each
meta-class corresponds to a typed node and each meta-association corresponds
to a typed edge. Attributes in the meta-model are translated to corresponding
node attributes. The well-formedness constraints can be formalized by graph
constraints. Graph constraints allow the expression of properties over graphs
(more details can be found in [18]).

For each possible combination of connector type (cf. Figure 4) and pointcut
predicate (cf. Table 2), we specify a composition rule. Due to space restrictions

we only explain the rules for the FreeConnector. The complete set of composition
rules can be found in [17].

Fig. 5. The FreeAndSplittingOI graph transformation rule in AGG. The leftmost pane
represents a NAC, which should be seen as a forbidden structure. The next pane
represents the positive part of the rule’s left-hand side. The rightmost pane represents
the right-hand side of the rule.

Figure 5 shows the rule that corresponds to an AND-splitting FreeConnector
expressed in the general-purpose graph transformation tool AGG.2 The left-hand
side of a graph transformation rule is composed of a positive condition, i.e., the
presence of certain combinations of nodes and edges, and optionally, a set of
negative application conditions (NACs), i.e., absence of certain combinations of
nodes and edges. On the right-hand side of the transformation rule the result of
weaving the workflow concern in the base workflow concern is shown. Remark
that eight rules are specified for the FreeConnector : four rules for the AND-
splitting FreeConnector, and four for the XOR-splitting FreeConnector. Each of
these has four rules because of the possible combinations of control input and
output ports.

The FreeAndSplittingOI(sName : String, jName : String, aName : String)
rule adds a split at a certain control output port, adds a join at a certain control
input port, and inserts an activity between the new split and join. The rule is
parametrized with the name of the splitting control output port, the name of the
joining control input port, and the name of the activity that is to be inserted.
The left-hand side of the rule specifies the splitting ControlOutputPort and its
outgoing Transition, the joining ControlInputPort and its incoming Transition,
and the Activity that is to be inserted with its ControlInputPort and ControlOut-
putPort. The right-hand side specifies the graph after inserting the activity. The
splitting ControlOutputPort is now connected to a new AndSplit through a new
Transition. The AndSplit has two outgoing Transitions, the first is the split-
ting ControlOutputPort ’s original outgoing Transition, and the second is a new
Transition that is connected to the ControlInputPort of the inserted Activity.
The ControlOutputPort of the inserted Activity is connected to a new AndJoin
through a new Transition. The other incoming Transition of the AndJoin is the

2 See http://tfs.cs.tu-berlin.de/agg/.

joining ControlInputPort ’s original incoming Transition. Finally, the AndJoin is
connected to the joining ControlInputPort through a new Transition.

7 Implementation

We have created a proof-of-concept implementation for Unify, which is available
for download at [11]. The architecture of this implementation is shown in Figure
6. At the heart of the architecture lies a Java implementation of the Unify
base language (cf. Figure 3) and connector mechanism (cf. Figure 4). The Unify
API allows constructing and manipulating workflow concerns in-memory, while
extensions to the Unify framework provide parsers and serializers for existing
concrete workflow languages. A composition specifies which concerns should be
loaded and which connectors should be applied to them.

Eclipse plug-in
(under development)

Petri nets
execution model

(Java)

PNMLGraphviz

Petri nets
execution manager

(Java)

Petri nets
execution monitor

(Java)

Connector weaver
(Java)

Abstract syntax
(Java)

Unify
composition

Unify connectors
(plain text)Unify connectors

(plain text)Unify
concerns

Unify connectors
(plain text)Unify connectors

(plain text)Unify
connectors

BPMN / WS-BPEL

Fig. 6. Architecture of the Unify implementation

One by one, the Unify connector weaver applies the connectors to the base
concern in the order specified by the composition. For each connector, the base
concern is modified accordingly. The final modified base concern is transformed
into a Petri nets execution model if one wants to use Unify’s built-in work-
flow engine, or is exported back to the workflow language in which the original
concerns were specified. In this latter case, the composition is serialized into a
single workflow in which all concerns are woven together. An Eclipse plug-in that
facilitates interaction with the Unify tool chain is currently under development.

The instantiation process is straightforward for common workflow concepts,
i.e., activities and basic control flow concepts. However, three limitations may
arise when instantiating Unify: (1) The base language is graph-based, which
means that block-structured constructs such as those encountered in WS-BPEL
should be correctly mapped to Unify’s graph-based constructs, which is feasible.
(2) The base language only provides the basic control flow patterns identified
in existing research, which means that it is cumbersome to implement advanced

control flow patterns such as those encountered in YAWL [19]. (3) The base
language focuses on the control flow perspective, which means that it provides
no support for other perspectives, such as the exception handling perspective.
These limitations are the result of the deliberate choice to focus on the ex-
pressiveness of the modularization mechanism rather than on the expressiveness
of the individual modules, and could be addressed by iterating over the base
language meta-model. We believe that the current meta-model is sufficient for
demonstrating our contributions to the modularization of workflow concerns.

8 Related Work

Broadly speaking, the related work we consider can be divided into four domains:
Component Based Systems. Component based software development

(CBSD) aims to promote separation of (non-crosscutting) concerns by allowing
the composition of independent software components. Although some component
frameworks allow modularizing specific crosscutting concerns using constructs
like deployment descriptors, a general modularization mechanism for crosscut-
ting concerns is typically unavailable. In the context of CBSD, connectors are
often used to specify the roles that different software components fulfill in a
composition [20]. Unify connectors are inspired by such component-based con-
nectors, and are similarly used to specify, at deployment time, how different con-
cerns should be composed. However, unlike component-based connectors, with
respect to the connected concerns, Unify connectors describe both anticipated
and non-anticipated (e.g., aspect-oriented) connections.

Traditional Workflow Languages. The most well-known current work-
flow languages are WS-BPEL [10] and YAWL [19]. WS-BPEL has notoriously
poor support for separation of concerns (which has led to a number of aspect-
oriented approaches that aim to remedy this; see below): a WS-BPEL process
is a monolithic XML file that cannot be straightforwardly divided into sub-
processes. YAWL improves on this in that it allows workflows to be divided into
reusable sub-workflows.

Aspect-Oriented Programming for Workflows. The lack of modular-
ization mechanisms in traditional workflow languages, most notably WS-BPEL,
has led to the development of a number of aspect-oriented approaches for wor-
fklows. AO4BPEL [6], the approach by Courbis & Finkelstein [7], and Padus
[3] are the most well-known. They all allow modularizing crosscutting concerns
in WS-BPEL workflows using separate aspects. Unify improves on them by al-
lowing the modularization of all workflow concerns, i.e., not only crosscutting
ones, and by introducing workflow-specific advice types in addition to the classic
before, after, and around advice types. Moreover, Unify is not restricted to any
concrete workflow language such as WS-BPEL.

Dynamic Workflow Systems. Existing research has produced a taxon-
omy of workflow flexibility [21]. With regard to this taxonomy, Unify mainly
aims to improve workflow flexibility by design by providing a more expressive
modularization mechanism than those offered by current workflow languages.

The use of the standard Unify connector weaver precludes other forms of flex-
ibility, i.e., flexibility by deviation, by underspecification, or by change (which
describe different kinds of runtime adaptation of workflows). Extending our ex-
ecution model with support for runtime enabling and disabling of connectors
would remove this restriction, but is currently beyond the scope of our research,
as runtime adaptation does not improve the design or reuse of workflow con-
cerns. This constitutes an important difference in focus with regard to workflow
systems that allow dynamically changing workflows.

9 Conclusions and Future Work

Existing workflow languages have insufficient support for separation of concerns.
This can make workflows hard to comprehend, maintain, and reuse. We address
this problem by introducing Unify, a framework that allows specifying both
regular and crosscutting workflow concerns in isolation of each other. The Unify
connector mechanism allows connecting these independently specified concerns
using a number of workflow-specific connectors.

Activity connectors allow expressing that an existing activity in one concern
should be implemented by executing another concern, in a way that minimizes
dependencies between these concerns and thus facilitates their independent evo-
lution and reuse. Additionally, inversion-of-control connectors allow augmenting
a concern with other concerns that were not considered when it was designed,
and again facilitates independent evolution and reuse of these concerns.

At the heart of Unify lies a meta-model that allows expressing arbitrary
workflows, and which can be mapped to several concrete workflow languages
and notations. We also provide a meta-model for the connector mechanism, and
discuss its interaction with the control flow and data perspectives. We provide
a semantics for the weaving of the connectors using the graph transformation
formalism.

We have identified the following directions of future work: (1) Unify con-
nectors are currently specified using a textual syntax (cf. Section 3). We are
investigating how we can support workflow developers in specifying connectors
in a visual way. (2) Although a proof-of-concept implementation of Unify has
been developed, tool support should be extended in order to facilitate adoption
of the approach. Therefore, we are developing an Eclipse plug-in that facilitates
interaction with the Unify tool chain. (3) We are working on a more exten-
sive validation of our approach, based on the refactoring of a real-life workflow
application using Unify.

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12) (1972) 1053–1058

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Lecture Notes in Computer Science 1241
(1997) 220–242

3. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten, R.,
Truyen, E., Joosen, W., Jonckers, V.: Isolating process-level concerns using Padus.
Lecture Notes in Computer Science 4102 (2006) 113–128

4. Joncheere, N., Deridder, D., Van Der Straeten, R., Jonckers, V.: A framework
for advanced modularization and data flow in workflow systems. Lecture Notes in
Computer Science 5364 (2008) 592–598

5. Arsanjani, A., Hailpern, B., Martin, J., Tarr, P.: Web services: Promises and
compromises. ACM Queue 1(1) (2003) 48–58

6. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
Lecture Notes in Computer Science 3250 (2004) 168–182

7. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Proceedings
of the 27th International Conference on Software Engineering (ICSE 2005). St.
Louis, MO, USA, ACM Press (2005) 69–77

8. Gonzalez, O., Casallas, R., Deridder, D.: MMC-BPM: A domain-specific language
for business process analysis. Lecture Notes in Business Information Processing
21 (2009) 157–168

9. Object Management Group: Business Process Model and Notation, version 2.0
(2011) http://www.omg.org/spec/BPMN/2.0/.

10. Jordan, D., Evdemon, J., et al.: Web Services Business Process Execu-
tion Language, version 2.0 (2007) http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

11. Joncheere, N., et al.: The Unify framework (2009) http://soft.vub.ac.be/

~njonchee/artifacts/unify/.
12. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On structured workflow mod-

elling. Lecture Notes in Computer Science 1789 (2000) 431–445
13. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow

control-flow patterns: A revised view. BPM Center Report BPM-06-22, BPM
Center (2006)

14. De Fraine, B., Joncheere, N., Noguera, C.: Detection and resolution of as-
pect interactions in workflows. Technical Report SOFT-TR-2011.06.20, Vrije
Universiteit Brussel, Software Languages Lab, Brussels, Belgium (2011) http:

//soft.vub.ac.be/~njonchee/publications/TR20110620.pdf.
15. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow

data patterns. QUT Technical Report FIT-TR-2004-01, Queensland University of
Technology (2004)

16. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, River Edge, NJ, USA
(1997)

17. Joncheere, N., Van Der Straeten, R.: Semantics of the Unify composition mecha-
nism. Technical Report SOFT-TR-2011.04.15, Vrije Universiteit Brussel, Software
Languages Lab, Brussels, Belgium (2011) http://soft.vub.ac.be/~njonchee/

publications/TR20110415.pdf.
18. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph

transformation. Monographs in Theoretical Computer Science. Springer (2006)
19. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow

Language. Information Systems 30(4) (2005) 245–275
20. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice Hall, Upper Saddle River, NJ, USA (1996)
21. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Pro-

cess flexibility: A survey of contemporary approaches. Lecture Notes in Business
Information Processing 10 (2008) 16–30

