
Semantics of the Unify

Composition Mechanism

Technical Report SOFT-TR-2011.04.15

Niels Joncheere and Ragnhild Van Der Straeten

Vrije Universiteit Brussel

Software Languages Lab

Pleinlaan 2, 1050 Brussels, Belgium

{njonchee,rvdstrae}@vub.ac.be

Semantics of the UNIFY Composition Mechanism

Niels Joncheere and Ragnhild Van Der Straeten
Vrije Universiteit Brussel
Software Languages Lab

Pleinlaan 2, 1050 Brussels, Belgium
{njonchee,rvdstrae}@vub.ac.be

April 15, 2011

Abstract

Existing workflow languages have insufficient support for separation of concerns. This makes
workflows hard to comprehend, maintain and reuse. The UNIFY framework addresses this prob-
lem by allowing to specify each workflow concern — regular or crosscutting — in isolation of
other concerns, and providing a connector mechanism that is used to connect different concerns
according to workflow-specific connection patterns. This technical report provides a detailed de-
scription of the semantics of the UNIFY connector mechanism by enumerating the graph trans-
formation rules for each of its connector types.

Contents

1 History 2

2 Introduction 3

3 The UNIFY Framework 5
3.1 Base Language . 5
3.2 Connector Mechanism . 6

4 Graph Transformation 9

5 Rules 10
5.1 BeforeConnector . 10
5.2 AfterConnector . 10
5.3 AroundConnector . 10
5.4 ParallelConnector . 11
5.5 ChoiceConnector . 12
5.6 InConnector . 13
5.7 FreeConnector . 14

6 Conclusions 21

1

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

1 History

Date Comment
April 15, 2011 Creation

2

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

2 Introduction

Workflow management systems have become a popular technique for automating processes in many
domains, ranging from high-level business process management to low-level web service orchestra-
tion. In each of these domains, workflows consist of several concerns. If all of a workflow’s concerns
can only be specified in a single, monolithic module, it will be hard to comprehend, maintain, or
reuse the workflow. Therefore, mechanisms have been developed to decompose workflows into sep-
arate modules such as sub-workflows. Unfortunately, a workflow can only be decomposed according
to one dimension, and concerns that do not align with this decomposition end up scattered across
the workflow and tangled with one another.

This problem has been identified in software engineering research, and is called the tyranny of the
dominant decomposition [14]. The concern that guides the decomposition is called the base concern,
and concerns that do not align with it are called crosscutting concerns. Aspect-oriented programming
(AOP) [9] is a well-known approach that allows modularizing crosscutting concerns in separate as-
pects. An aspect consists of a pointcut and an advice. A pointcut selects a set of locations — which
are called joinpoints — in a program, and an advice specifies the concern’s behavior, which should be
executed before, after, or around each of these locations.

Existing research has identified the need for better separation of concerns in workflows: Charfi
and Mezini [3] and Courbis and Finkelstein [4] have proposed aspect-oriented extensions to BPEL [1]
that allow inserting functionality before, after, or around any BPEL activity. In our previous work on
PADUS [2], we argued that workflows may require more than these classic before, after, and around
advices. For example, it can be useful to allow adding an extra branch to a split, and this cannot
be easily expressed using the classic advices. We implemented this new advice, and called it the in
advice.

Our approach, which is called UNIFY, improves on existing research (including PADUS) on the
following five points:

1. Existing research on modularization of workflow concerns is aimed at only modularizing cross-
cutting concerns [3, 4, 2], or at only modularizing one particular kind of concern, such as mon-
itoring [5]. UNIFY, on the other hand, aims to provide a uniform approach for modularizing all
workflow concerns.

2. Existing aspect-oriented approaches for workflows are fairly straightforward applications of
general aspect-oriented principles, and are insufficiently focused on the concrete context of
workflows. UNIFY improves on this by allowing workflow concerns to connect to each other in
workflow-specific ways, i.e., the connector mechanism supports a number of dedicated control
flow patterns.

3. UNIFY is designed to be applicable to a wide range of concrete workflow languages. This is
accomplished by defining its connector mechanism in terms of a general base language meta-
model.

4. UNIFY defines a clear semantics for both the workflow concerns and their connections. This
facilitates the application of existing workflow verification techniques.

5. The UNIFY implementation can either be used as a separate workflow engine, or as a pre-
processor that is compatible with existing workflow engines.

We already introduced the general concepts of our approach in previous work [6], without de-
scribing its concrete syntax, abstract syntax, semantics, or implementation. In [7], we provide a com-
plete description of the UNIFY framework. However, space restrictions prevented us from giving a list

3

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

of all graph transformation rules. This technical report does provide this information. Its structure is
as follows. Section 3 gives a brief overview of UNIFY. Section 4 introduces graph transformation, and
Section 5 enumerates our graph transformation rules. Section 6 concludes this technical report.

4

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

3 The UNIFY Framework

3.1 Base Language

At the heart of the UNIFY framework lies the base language meta-model shown in Figure 1.

Transitiondestination

CompositeActivity

AtomicActivity

name
condition

ControlPort

ControlInputPort

ControlOutputPort

Activity

0..*

0..*

0..1

StartEvent

EndEvent

0..*

parent

children

controlIn controlOut
{ordered}

Join

Split

AndSplit

XorSplit

AndJoin

XorJoin

0..1 0..1 0..1 0..1andJoin xorJoinxorSplitandSplit

... corresponds to ... !

... corresponds to ... !

ControlNode

name
Node

Event

source

11 0..1 0..1

context StartEvent:

self.controlIn->size() = 0

and self.controlOut->size() = 1

context EndEvent:

self.controlIn->size() = 1

and self.controlOut->size() = 0

context Activity:

self.controlIn->size() = 1

and self.controlOut->size() = 1

context Split:

self.controlIn->size() = 1

and self.controlOut->size() > 0

context Join:

self.controlIn->size() > 0

and self.controlOut->size() = 1

parent parent1 1

transition transition

context CompositeActivity:

self.children->count(c | c.oclIsTypeOf(StartEvent)) = 1

and self.children->count(c | c.oclIsTypeOf(EndEvent)) = 1

and self.children->forAll(c1, c2 |

 c1 <> c2 implies c1.name <> c2.name)

context Node:

self.controlIn->union(self.controlOut)->forAll(c1, c2 |

 c1 <> c2 implies c1.name <> c2.name)

Figure 1: The UNIFY base language meta-model

A concern is modeled as a CompositeActivity. Each CompositeActivity has the following children:

• A StartEvent, which represents the point where the CompositeActivity’s execution starts.

• An EndEvent, which represents the point where the CompositeActivity’s execution ends.

• Any number of Activities, which are the units of work that are performed by the CompositeAc-
tivity.

• Any number of ControlNodes, which are used to route the CompositeActivity’s control flow.

• One or more Transitions, which connect the StartEvent, the EndEvent, the Activities and the
ControlNodes to each other.

An Activity is either a CompositeActivity or an AtomicActivity. Nested CompositeActivities can be
used to hierarchically decompose a concern, similar to the classic sub-workflow decomposition pat-
tern. Each Activity has a name that is unique among its siblings in the composition hierarchy, and has
one ControlInputPort and one ControlOutputPort. A ControlInputPort represents the point where
control enters an Activity, while a ControlOutputPort represents the point where control exits an Ac-
tivity. Each ControlPort has a name that is unique among its siblings. Within a CompositeActivity, the
StartEvent is used to specify where the CompositeActivity’s execution should start when its ControlIn-
putPort is triggered. The EndEvent is used to specify where the CompositeActivity’s execution should

5

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

finish, and will cause the CompositeActivity’s ControlOutputPort to be triggered. Thus, a StartEvent
only has a ControlOutputPort, and an EndEvent only has a ControlInputPort.

Transitions define how control flows through a CompositeActivity. This is done by connecting the
ControlOutputPorts of the CompositeActivity’s Nodes to ControlInputPorts. ControlNodes can be used
to route the flow of control, and are either AndSplits, XorSplits, AndJoins or XorJoins. A Split may have
a corresponding Join. Together, Transitions and ControlNodes define a CompositeActivity’s control
flow perspective.

The UNIFY base language meta-model does not aim to support every possible control flow pat-
tern that has been identified in existing literature, as our research focuses on the expressiveness of the
modularization mechanism rather than on the expressiveness of the individual modules. The UNIFY

base language meta-model supports the basic control flow patterns [12], which are sufficient for ex-
pressing most workflows. We do not aim to support more advanced patterns such as cancellation
and multiple instances. Due to the generic nature of the UNIFY base language meta-model, the cores
of most workflow languages are compatible with it. We have extended the meta-model towards the
cores of the WS-BPEL [8] and BPMN [10] workflow languages.

3.2 Connector Mechanism

UNIFY promotes separation of concerns by allowing workflow concerns to be specified in isolation
of each other, as separate CompositeActivities. These can be executed by themselves, or can be con-
nected to other concerns using connectors. Figure 2 shows the meta-model for the UNIFY connector
mechanism. In the interest of brevity, the definition for the CompositeActivity’s allNodes and allCon-
trolPorts queries are omitted. These queries return the set of nodes and control ports, respectively,
obtained by the transitive closure of the children relation.

ActivityConnector

splittingType
FreeConnector

Activity

Before
Connector

After
Connector

Around
Connector

splitPointcut
InConnector

name
condition

ControlPort

Composition

name
Connector

InversionOfControl
Connector

activityPointcut

Basic
InversionOfControl

Connector

Split

1

baseConcern

0..*

connectors
{ordered}

0..*

1..*

0..*

1 advice

/split 0..*

0..*

0..*
/activity

activity
1

0..*

0..*

0..* 0..*

joiningsplitting

1 1

executedActivity
1

0..*

context ActivityConnector:
self.composition.baseConcern
 ->allNodes()
 ->includes(self.activity)

composition

context BasicInversionOfControlConnector:
self.composition.baseConcern
 ->allNodes()->includes(self.activity)

context InConnector:
self.composition.baseConcern
 ->allNodes()
 ->includes(self.split)

context FreeConnector:
self.composition.baseConcern
 ->allControlPorts()->includes(self.splitting)
and self.composition.baseConcern
 ->allControlPorts()->includes(self.joining)

CompositeActivity

Parallel
Connector

Choice
Connector

Figure 2: The UNIFY connector meta-model

A Composition specifies which CompositeActivity is its base concern, and which Connectors are to
be applied to it. The set of Connectors is ordered, and they will be applied according to this ordering.

Connectors can be used to add functionality at certain points in a concern. They can be divided
into two categories: ActivityConnectors and InversionOfControlConnectors. In a traditional work-
flow language, a workflow can be divided into several levels of granularity through the use of sub-
workflows. Control passes from the main workflow into sub-workflows and back, with the main work-

6

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

flow specifying when the sub-workflow should be executed. An ActivityConnector allows expressing
that a certain Activity inside a certain concern should be implemented by executing another Activity,
which thus acts as a sub-concern. By specifying this link in a separate connector instead of inside the
concern, we reduce coupling between the concern and the sub-concern, thus promoting reuse.

InversionOfControlConnectors invert the traditional passing of control from main workflow into
sub-workflows: they specify that a certain concern should be adapted, while this concern is not aware
of this adaptation. In this way, such connectors can be used to add concerns that were not anticipated
when the concern to which they are applied was created.

Joinpoints are well-defined points during the execution of a concern where extra functionality —
the advice — can be inserted using an InversionOfControlConnector. Joinpoints in existing aspect-
oriented approaches for workflows are either every XML element of the workflow definition [3, 4] or
every workflow activity [2]. As is shown in Table 1, our approach supports three kinds of joinpoints:
Activities, Splits, and ControlPorts.

Advice type Joinpoint
before Activity
after Activity
around Activity
parallel Activity
choice Activity
in Split
free ControlPort

Table 1: Advice types and joinpoints

Activity pointcuts
activity(identifierpattern)
compositeactivity(identifierpattern)
atomicactivity(identifierpattern)

Split pointcuts
split(identifierpattern)
andsplit(identifierpattern)
xorsplit(identifierpattern)

Control port pointcuts
controlport(identifier)
controlinputport(identifier)
controloutputport(identifier)

Table 2: Pointcut predicates

Pointcuts are expressions that resolve to a set of joinpoints, and are used to specify where in the
base concern the connector should add its functionality. Because all Activities, Splits and Control-
Ports have names that are unique among their siblings, every joinpoint can be uniquely identified by
prepending the name of the Activity, Split or ControlPort with the names of their parents. For exam-
ple, the ControlOut control port of the ReturnObjections activity in the SoftwareDevelopment

base concern can be uniquely identified as SoftwareDevelopment.ReturnObjections.Control-
Out. This allows specifying sets of joinpoints as identifier patterns. Pointcuts can be expressed using
the predicates in Table 2. For example, if one wants to select all Activities in the SoftwareDevelopment
base concern whose names end with Phase, one can use the expression executingactivity("Soft-

wareDevelopment\..*Phase").
There are seven kinds of InversionOfControlConnectors, one for each of the advice types listed in

Table 1.
BeforeConnectors, AfterConnectors, and AroundConnectors allow inserting a certain Activity be-

fore, after, or around each member of a set of Activities in another concern. These correspond to the
classic before, after, and around advice types that are common in aspect-oriented research.

ParallelConnectors and ChoiceConnectors allow adding a parallel or alternative Activity to each
member of a set of Activities in another concern. These are novel advice types that have not yet been
considered in aspect-oriented research.

InConnectors allow adding an Activity as an extra branch to an existing Split. These are similar to

7

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

PADUS’s in advice type [2].
FreeConnectors allow (AND- or XOR-) splitting a concern’s control flow into another Activity at a

certain control port, and joining the concern at another control port. These control ports are spec-
ified using two pointcuts: the splitting pointcut and the joining pointcut, respectively. The splitting
pointcut specifies where the concern’s control flow will be split into the advice activity, and the joining
pointcut specifies where the concern will be joined. FreeConnectors are more general than Parallel-
, Choice-, and InConnectors: Parallel- and ChoiceConnectors allow adding a parallel or alternative
Activity to an existing Activity and InConnectors allow adding an Activity as an extra branch to an
existing Split, whereas FreeConnectors allow more freedom in where the control flow of the base con-
cern is split into the advice concern, and where the advice concern joins the control flow of the base
concern.

The concrete syntax of the connectors is not relevant at this time: this technical report only deals
with the connectors’ semantics, which is discussed in the next sections.

8

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

4 Graph Transformation

The semantics of a connector, which connects an advice concern to a base concern, is given by con-
structing a new concern that composes the base concern and the advice concern according to the
connector type and the pointcut specification. This is accomplished using graph transformation rules
that work on the abstract syntax of the UNIFY base language.

A graph consists of a set of nodes and a set of edges. A typed graph is a graph in which each node
and edge belong to a type defined in a type graph. An attributed graph is a graph in which each node
and edge may contain attributes where each attribute is a (value, t y pe) pair giving the value of the
attribute and its type. Types can be structured by an inheritance relation.

A graph transformation rule is a rule used to modify a host graph, G , and is defined by two graphs
(L, R). L is the left-hand side of the rule representing the pre-conditions of the rule and R is the right-
hand side representing the post-conditions of the rule. The process of applying the rule to a graph G
involves finding a graph monomorphism, h, from L to G and replacing h(L) in G with h(R). Further
details can be found in [11].

In our approach, the type graph represents the meta-model shown in Figure 1. The translation
of this meta-model to a type graph is straightforward: each meta-class corresponds to a typed node
and each meta-association corresponds to a typed edge. Attributes in the meta-model are translated
to corresponding node attributes. The wellformedness constraints can be formalized by graph con-
straints. Figure 3 shows a screenshot of UNIFY’s type graph and Before rule in AGG [13].

Figure 3: Screenshot of UNIFY’s type graph (bottom) and Before rule (top) in AGG

9

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

5 Rules

5.1 BeforeConnector

The rule for the BeforeConnector is parametrized by the name of a joinpoint Activity, and the name of
the advice Activity that should be added before it. The evaluation of the regular expressions used in
the pointcut predicates executingactivity, executingcompositeactivity and executingatom-

icactivity results in a set of joinpoint Activity names. Each name is the input for a rule application.
Figure 4 shows the Before(joinpointName : String, adviceName : String) rule. The left-hand side of
the rule specifies the partial match of the workflow that will be augmented (i.e., an Activity whose
name is the value of the joinpointName parameter, together with its ControlInputPort and the Tran-
sition that is connected to it) and the advice Activity named adviceName with its corresponding input
and output ports. The right-hand side of the rule shows the connection of the original Transition to
the advice Activity’s ControlInputPort, and of the advice Activity’s ControlOutputPort to the joinpoint
Activity’s ControlInputPort through a new Transition.

9: ControlOutputPort

6: controlIn

8: controlOut

LHS RHS

Before(joinpointName : String, adviceName : String)

5: ControlInputPort

7: Activity

name = adviceName

4: Node

name = joinpointName

2: ControlInputPort

1: Transition

3: controlIn

destination

9: ControlOutputPort

6: controlIn

8: controlOut

5: ControlInputPort

7: Activity

name = adviceName

1: Transition
destination

: Transition

source

4: Node

name = joinpointName

2: ControlInputPort

3: controlIn

destination

Figure 4: The Before rule

5.2 AfterConnector

The rule for the AfterConnector is similar to the rule for the BeforeConnector. It is parametrized by
the name of a joinpoint Activity, and the name of the advice Activity that should be added after
it. The evaluation of the regular expressions used in the pointcut predicates executingactivity,
executingcompositeactivity and executingatomicactivity results in a set of joinpoint Activ-
ity names. Each name is the input for a rule application. Figure 5 shows the After(joinpointName
: String, adviceName : String) rule. The left-hand side of the rule specifies the partial match of the
workflow that will be augmented (i.e., an Activity whose name is the value of the joinpointName

parameter, together with its ControlOutputPort and the Transition that is connected to it) and the
advice Activity named adviceName with its corresponding input and output ports. The right-hand
side of the rule shows the connection of the joinpoint Activity’s ControlOutputPort to the advice Ac-
tivity’s ControlInputPort through a new Transition, and of the advice Activity’s ControlOutputPort to
the original Transition.

5.3 AroundConnector

The rule for the AroundConnector is parametrized by the name of a joinpoint Activity, the name of
the advice CompositeActivity that should be woven around it, and the name of the proceed Activity
(which is a child of the advice CompositeActivity and indicates where the joinpoint Activity should
occur within the advice). The evaluation of the regular expressions used in the pointcut predicates

10

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

9: ControlOutputPort

6: controlIn

8: controlOut

LHS RHS

After(joinpointName : String, adviceName : String)

5: ControlInputPort

7: Activity

name = adviceName

1: Node

name = joinpointName

3: ControlOutputPort

4: Transition

2: controlOut

source

9: ControlOutputPort

6: controlIn

8: controlOut

5: ControlInputPort

7: Activity

name = adviceName: Transition

1: Node

name = joinpointName

3: ControlOutputPort

2: controlOut

source

destination

4: Transition
source

Figure 5: The After rule

executingactivity, executingcompositeactivity and executingatomicactivity results in a
set of joinpoint Activity names. Each name is the input for a rule application. Figure 6 shows the
Around(joinpointName : String, adviceName : String, proceedName : String) rule. The left-hand
side of the rule specifies the partial match of the workflow that will be augmented: an Activity whose
name is the value of the joinpointName parameter (together with its ControlInputPort and Con-
trolOutputPort, and the Transitions that are connected to them), the advice CompositeActivity named
adviceName with its corresponding control input and output ports, and the advice CompositeActiv-
ity’s child Activity named proceedName (together with its ControlInputPort and ControlOutputPort,
and the Transitions that are connected to them). The right-hand side of the rule shows the connec-
tion of the original incoming Transition to the advice Activity’s ControlInputPort, and of the advice
Activity’s ControlOutputPort to the original outgoing Transition. As a child of the advice Activity, the
proceed Activity is replaced by the joinpoint Activity.

LHS

RHS

Around(joinpointName : String, adviceName : String, proceedName : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

10: Activity
name = adviceName

12: ControlOutputPort 7: Transition

11: controlOut source

8: ControlInputPort1: Transition

destination 9: controlIn

: Activity
name = proceedName

: ControlOutputPort 14: Transition

controlOut source

: ControlInputPort13: Transition

destination controlIn child

4: Activity
name = joinpointName

6: ControlOutputPort 14: Transition

5: controlOut source

2: ControlInputPort13: Transition

destination 3: controlIn child

Figure 6: The Around rule

5.4 ParallelConnector

The rule for the ParallelConnector is parametrized by the name of a joinpoint Activity, and the name
of the advice Activity that should be added parallel to it. The evaluation of the regular expressions
used in the pointcut predicates executingactivity, executingcompositeactivity and execut-

11

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

ingatomicactivity results in a set of joinpoint Activity names. Each name is the input for a rule
application. Figure 7 shows the Parallel(joinpointName : String, adviceName : String) rule. The
left-hand side of the rule specifies the partial match of the workflow that will be augmented (i.e., an
Activity whose name is the value of the joinpointName parameter, together with its ControlInput-
Port and the incoming Transition that is connected to it, and its ControlOutputPort and the outgoing
Transition that is connected to it) and the advice Activity named adviceName with its corresponding
input and output ports. The right-hand side of the rule shows the connection of the original incoming
Transition to a new AndSplit (through a new ControlInputPort). The new AndSplit has two outgoing
branches: the first connects the new AndSplit to the joinpoint Activity’s ControlInputPort (through
a new ControlOutputPort and Transition), while the second connects the new AndSplit to the ad-
vice Activity’s ControlInputPort (through a new ControlOutputPort and Transition). The joinpoint
Activity’s ControlOutputPort is connected to a new AndJoin (through a new Transition and ControlIn-
putPort), just like the advice Activity’s ControlOutputPort is connected to this new AndJoin (through
a new Transition and ControlInputPort). Finally, the new AndJoin is connected to the joinpoint Activ-
ity’s original outgoing Transition (through a new ControlOutputPort).

LHS

RHS

Parallel(joinpointName : String, adviceName : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

7: Transition

: ControlInputPort

1: Transition

: AndSplit : ControlOutputPort

: ControlOutputPort

: Transition

4: Activity
name = joinpointName

6: ControlOutputPort

5: controlOut

2: ControlInputPort

3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

: Transition

destination

controlIn

controlOut

controlOut

source
destination

source

destination

: ControlOutputPort

: AndJoin: ControlInputPort

: Transition

: Transition

: ControlInputPort

source
destination

controlIn

controlOut

source

destination

source

controlIn

Figure 7: The Parallel rule

5.5 ChoiceConnector

The rule for the ChoiceConnector is similar to the rule for the ParallelConnector. It is parametrized by
the name of a joinpoint Activity, the name of the advice Activity that should be added alternative to it,
and the condition that decides whether the alternative branch should be followed or not. The evalua-
tion of the regular expressions used in the pointcut predicates executingactivity, executingcom-
positeactivity and executingatomicactivity results in a set of joinpoint Activity names. Each
name is the input for a rule application. Figure 8 shows the Choice(joinpointName : String, advice-
Name : String, sCondition : String) rule. The left-hand side of the rule specifies the partial match of
the workflow that will be augmented (i.e., an Activity whose name is the value of the joinpointName

12

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

parameter, together with its ControlInputPort and the incoming Transition that is connected to it,
and its ControlOutputPort and the outgoing Transition that is connected to it) and the advice Activ-
ity named adviceName with its corresponding input and output ports. The right-hand side of the
rule shows the connection of the original incoming Transition to a new XorSplit (through a new Con-
trolInputPort). The new XorSplit has two outgoing branches: the first connects the new AndSplit to
the joinpoint Activity’s ControlInputPort (through a new ControlOutputPort and Transition), while
the second connects the new AndSplit to the advice Activity’s ControlInputPort (through a new Con-
trolOutputPort and Transition) using the specified condition. The joinpoint Activity’s ControlOut-
putPort is connected to a new XorJoin (through a new Transition and ControlInputPort), just like the
advice Activity’s ControlOutputPort is connected to this new XorJoin (through a new Transition and
ControlInputPort). Finally, the new XorJoin is connected to the joinpoint Activity’s original outgoing
Transition (through a new ControlOutputPort).

LHS

RHS

Choice(joinpointName : String, adviceName : String, sCondition : String)

4: Activity
name = joinpointName

6: ControlOutputPort 7: Transition

5: controlOut source

2: ControlInputPort1: Transition

destination 3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

7: Transition

: ControlInputPort

1: Transition

: XorSplit : ControlOutputPort

: Transition

4: Activity
name = joinpointName

6: ControlOutputPort

5: controlOut

2: ControlInputPort

3: controlIn

10: Activity
name = adviceName

12: ControlOutputPort

11: controlOut

8: ControlInputPort

9: controlIn

: Transition

destination

controlIn

controlOut

controlOut

source
destination

source

destination

: ControlOutputPort

: XorJoin: ControlInputPort

: Transition

: Transition

: ControlInputPort

source
destination

controlIn

controlOut

source

destination

source

controlIn

: ControlOutputPort
condition = sCondition

Figure 8: The Choice rule

5.6 InConnector

Each rule for the InConnector is parametrized by the name of a Split and the name of the Activity
that is to be added as an extra branch to this split. The evaluation of the regular expressions used in
the pointcut predicates split, andsplit and xorsplit results in a set of Split names. Each name is
the input for a rule application. Figure 9 shows the InAndSplit(sName : String, aName : String) rule
corresponding to an InConnector with pointcut predicate andsplit. The left-hand side of the rule
specifies the partial match of the workflow that will be augmented (i.e., an AndSplit whose name is the
value of the sName parameter) and the advice Activity named aName which can be an AtomicActivity
or a CompositeActivity with its corresponding input and output ports. The right-hand side of the rule
shows the addition of a branch to the AndSplit by adding a ControlOutputPort to it, and connecting
it to the ControlInputPort of the advice Activity using a new Transition. A ControlInputPort is added
to the AndSplit’s corresponding AndJoin, and is connected to the advice Activity’s ControlOutputPort

13

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

using a new Transition. Remark that in the left-hand side of the rule we demand the existence of a
corresponding AndJoin for the AndSplit. This means that the workflow developer needs to take care
of adding a join for each split or we assume a preprocessing step where corresponding joins to splits
are inserted in the workflow if possible.

3: AndJoin

1: AndSplit

name = sName

2: andJoin

8: ControlOutputPort

5: controlIn

7: controlOut

LHS RHS

destination

source

InAndSplit(sName : String, aName : String)

4: ControlInputPort

6: Activity

name = aName

8: ControlOutputPort

5: controlIn

7: controlOut

4: ControlInputPort

6: Activity

name = aName

3: AndJoin

1: AndSplit

name = sName

2: andJoin

: ControlOutputPort

: Transition

: Transition

: ControlInputPort

source

destination

controlIn

controlOut

Figure 9: The InAndSplit rule

The composition rule for the InConnector and the xorsplit pointcut predicate is similar, and is
given in Figure 10 by InXorSplit(sName : String, aName : String). A rule for the InConnector and
the split pointcut predicate is not necessary because each split identified by the evaluation of the
regular expression in the split predicate is an AndSplit or an XorSplit. As a result of this either the
InAndSplit or the InXorSplit rule will be triggered.

3: XorJoin

1: XorSplit

name = sName

2: xorJoin

8: ControlOutputPort

5: controlIn

7: controlOut

LHS RHS

destination

source

InXorSplit(sName : String, aName : String)

4: ControlInputPort

6: Activity

name = aName

8: ControlOutputPort

5: controlIn

7: controlOut

4: ControlInputPort

6: Activity

name = aName

3: XorJoin

1: XorSplit

name = sName

2: xorJoin

: ControlOutputPort

: Transition

: Transition

: ControlInputPort

source

destination

controlIn

controlOut

Figure 10: The InXorSplit rule

5.7 FreeConnector

A FreeConnector can vary in its splitting behavior, which is either AND-splitting or XOR-splitting, and
in the types of its splitting and joining control ports, which are either input/input, input/output, out-
put/input, or output/output. Thus, there are eight rules in total, as shown in Table 3.

The FreeAndSplitII(sName : String, jName : String, aName : String) rule, which is given in Fig-
ure 11, adds a split at a certain control input port and joins at another control input port. The rule
is parametrized with the name of the splitting control input port, the name of the joining control
input port, and the name of the activity that is to be inserted. The left-hand side of the rule speci-
fies the splitting ControlInputPort and its incoming Transition, the joining ControlInputPort and its

14

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

Splitting behavior Splitting control port Joining control port Rule name Figure
AND-splitting input input FreeAndSplitII Figure 11

output FreeAndSplitIO Figure 13
output input FreeAndSplitOI Figure 15

output FreeAndSplitOO Figure 17
XOR-splitting input input FreeXorSplitII Figure 12

output FreeXorSplitIO Figure 14
output input FreeXorSplitOI Figure 16

output FreeXorSplitOO Figure 18

Table 3: The FreeConnector rules

incoming Transition, and the advice Activity with its ControlInputPort and ControlOutputPort. The
right-hand side specifies the graph after inserting the free advice. The splitting ControlInputPort’s
original incoming Transition is now connected to a new AndSplit. The AndSplit has two outgoing
Transitions, the first is a new Transition towards the splitting ControlInputPort, and the second is a
new Transition towards the ControlInputPort of the advice Activity. The ControlOutputPort of the ad-
vice Activity is connected to a new AndJoin through a new Transition. The other incoming Transition
of the AndJoin is the joining ControlInputPort’s original incoming Transition. Finally, the AndJoin’s
outgoing Transition is a new Transition towards the joining ControlInputPort.

FreeAndSplitII(sName : String, jName : String, aName : String)

LHS

2: ControlInputPort

name = sName

4: ControlInputPort

name = jName

1: Transition

3: Transition

destination

destination

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlInputPort

name = sName

: AndSplit

: AndJoin

4: ControlInputPort

name = jName

: ControlInputPort

1: Transition

destination

destination

destination

destination

source

controlIn

: ControlInputPort

3: Transition

destination

controlIn

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlOutputPort

: ControlOutputPort

controlOut

controlOut

source

source

: ControlOutputPort : Transition

controlOut

: ControlInputPort : Transition

source destination

controlIn

Figure 11: The FreeAndSplitII rule

The FreeXorSplitII(sName : String, jName : String, aName : String, sCondition : String) rule,
which is given in Figure 12, is analogous: the only difference is that it inserts an XorSplit (with the
appropriate splitting condition) and an XorJoin instead of an AndSplit and an AndJoin.

The FreeAndSplitIO(sName : String, jName : String, aName : String) rule, which is given in Fig-
ure 13, adds a split at a certain control input port and joins at a certain control output port. The
rule is parametrized with the name of the splitting control input port, the name of the joining control
output port, and the name of the activity that is to be inserted. The left-hand side of the rule speci-
fies the splitting ControlInputPort and its incoming Transition, the joining ControlOutputPort and its

15

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

: ControlOutputPort

condition = sCondition

FreeXorSplitII(sName : String, jName : String, aName : String, sCondition : String)

LHS

2: ControlInputPort

name = sName

4: ControlInputPort

name = jName

1: Transition

3: Transition

destination

destination

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlInputPort

name = sName

: XorSplit

: XorJoin

4: ControlInputPort

name = jName

: ControlInputPort

1: Transition

destination

destination

destination

destination

source

controlIn

: ControlInputPort

3: Transition

destination

controlIn

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlOutputPort

controlOut

controlOut

source

source

: ControlOutputPort : Transition

controlOut

: ControlInputPort : Transition

source destination

controlIn

Figure 12: The FreeXorSplitII rule

outgoing Transition, and the advice Activity with its ControlInputPort and ControlOutputPort. The
right-hand side specifies the graph after inserting the free advice. The splitting ControlInputPort’s
original incoming Transition is now connected to a new AndSplit. The AndSplit has two outgoing
Transitions, the first is a new Transition towards the splitting ControlInputPort, and the second is a
new Transition towards the ControlInputPort of the advice Activity. The ControlOutputPort of the
advice Activity is connected to a new AndJoin through a new Transition. The other incoming Tran-
sition of the AndJoin is a new Transition that comes from the joining ControlOutputPort. Finally, the
AndJoin’s outgoing Transition is the joining ControlOutputPort’s original outgoing Transition.

The FreeXorSplitIO(sName : String, jName : String, aName : String, sCondition : String) rule,
which is given in Figure 14, is analogous: the only difference is that it inserts an XorSplit (with the
appropriate splitting condition) and an XorJoin instead of an AndSplit and an AndJoin.

The FreeAndSplitOI(sName : String, jName : String, aName : String) rule, which is given in Fig-
ure 15, adds a split at a certain control output port and joins at a certain control input port. The rule
is parametrized with the name of the splitting control output port, the name of the joining control
input port, and the name of the activity that is to be inserted. The left-hand side of the rule speci-
fies the splitting ControlOutputPort and its outgoing Transition, the joining ControlInputPort and its
incoming Transition, and the advice Activity with its ControlInputPort and ControlOutputPort. The
right-hand side specifies the graph after inserting the free advice. The splitting ControlOutputPort is
now connected to a new AndSplit through a new Transition. The AndSplit has two outgoing Transi-
tions, the first is the splitting ControlOutputPort’s original outgoing Transition, and the second is a
new Transition towards the ControlInputPort of the advice Activity. The ControlOutputPort of the ad-
vice Activity is connected to a new AndJoin through a new Transition. The other incoming Transition
of the AndJoin is the joining ControlInputPort’s original incoming Transition. Finally, the AndJoin’s
outgoing Transition is a new Transition towards the joining ControlInputPort.

The FreeXorSplitOI(sName : String, jName : String, aName : String, sCondition : String) rule,
which is given in Figure 16, is analogous: the only difference is that it inserts an XorSplit (with the
appropriate splitting condition) and an XorJoin instead of an AndSplit and an AndJoin.

The FreeAndSplitOO(sName : String, jName : String, aName : String) rule, which is given in Fig-

16

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

FreeAndSplitIO(sName : String, jName : String, aName : String)

LHS

2: ControlInputPort

name = sName

4: ControlOutputPort

name = jName

1: Transition

3: Transition

destination

source

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlInputPort

name = sName

: AndSplit

: AndJoin

4: ControlOutputPort

name = jName

: ControlInputPort

1: Transition

destination

destination

destination

destination

source

controlIn

: ControlOutputPort

3: Transition

source

controlOut

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlOutputPort

: ControlOutputPort

controlOut

controlOut

source

source

: ControlInputPort : Transition

controlIn

: ControlInputPort : Transition

destination source

controlIn

Figure 13: The FreeAndSplitIO rule

ure 17, adds a split at a certain control output port and joins at another control output port. The rule
is parametrized with the name of the splitting control output port, the name of the joining control
output port, and the name of the activity that is to be inserted. The left-hand side of the rule specifies
the splitting ControlOutputPort and its outgoing Transition, the joining ControlOutputPort and its
outgoing Transition, and the advice Activity with its ControlInputPort and ControlOutputPort. The
right-hand side specifies the graph after inserting the free advice. The splitting ControlOutputPort is
now connected to a new AndSplit through a new Transition. The AndSplit has two outgoing Tran-
sitions, the first is the splitting ControlOutputPort’s original outgoing Transition, and the second is
a new Transition towards the ControlInputPort of the advice Activity. The ControlOutputPort of the
advice Activity is connected to a new AndJoin through a new Transition. The other incoming Tran-
sition of the AndJoin is a new Transition that comes from the joining ControlOutputPort. Finally, the
AndJoin’s outgoing Transition is the joining ControlOutputPort’s original outgoing Transition.

The FreeXorSplitOO(sName : String, jName : String, aName : String, sCondition : String) rule,
which is given in Figure 18, is analogous: the only difference is that it inserts an XorSplit (with the
appropriate splitting condition) and an XorJoin instead of an AndSplit and an AndJoin.

17

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

: ControlOutputPort

condition = sCondition

FreeXorSplitIO(sName : String, jName : String, aName : String, sCondition : String)

LHS

2: ControlInputPort

name = sName

4: ControlOutputPort

name = jName

1: Transition

3: Transition

destination

source

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlInputPort

name = sName

: XorSplit

: XorJoin

4: ControlOutputPort

name = jName

: ControlInputPort

1: Transition

destination

destination

destination

destination

source

controlIn

: ControlOutputPort

3: Transition

source

controlOut

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlOutputPort

controlOut

controlOut

source

source

: ControlInputPort : Transition

controlIn

: ControlInputPort : Transition

destination source

controlIn

Figure 14: The FreeXorSplitIO rule

FreeAndSplitOI(sName : String, jName : String, aName : String)

LHS

2: ControlOutputPort

name = sName

4: ControlInputPort

name = jName

1: Transition

3: Transition

source

destination

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlOutputPort

name = sName

: AndSplit

: AndJoin

4: ControlInputPort

name = jName

: ControlOutputPort

1: Transition

source

source

destination

destination

source

controlOut

: ControlInputPort

3: Transition

destination

controlIn

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlInputPort

: ControlOutputPort

controlIn

controlOut

destination

source

: ControlOutputPort : Transition

controlOut

: ControlInputPort : Transition

source destination

controlIn

Figure 15: The FreeAndSplitOI rule

18

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

: ControlOutputPort

condition = sCondition

FreeXorSplitOI(sName : String, jName : String, aName : String, sCondition : String)

LHS

2: ControlOutputPort

name = sName

4: ControlInputPort

name = jName

1: Transition

3: Transition

source

destination

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlOutputPort

name = sName

: XorSplit

: XorJoin

4: ControlInputPort

name = jName

: ControlOutputPort

1: Transition

source

source

destination

destination

source

controlOut

: ControlInputPort

3: Transition

destination

controlIn

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlInputPort

controlIn

controlOut

destination

source

: ControlOutputPort : Transition

controlOut

: ControlInputPort : Transition

source destination

controlIn

Figure 16: The FreeXorSplitOI rule

FreeAndSplitOO(sName : String, jName : String, aName : String)

LHS

2: ControlOutputPort

name = sName

4: ControlOutputPort

name = jName

1: Transition

3: Transition

source

source

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlOutputPort

name = sName

: AndSplit

: AndJoin

4: ControlOutputPort

name = jName

: ControlOutputPort

1: Transition

source

source

destination

destination

source

controlOut

: ControlOutputPort

3: Transition

source

controlOut

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlInputPort

: ControlOutputPort

controlIn

controlOut

destination

source

: ControlInputPort : Transition

controlIn

: ControlInputPort : Transition

destination source

controlIn

Figure 17: The FreeAndSplitOO rule

19

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

: ControlOutputPort

condition = sCondition

FreeXorSplitOO(sName : String, jName : String, aName : String, sCondition : String)

LHS

2: ControlOutputPort

name = sName

4: ControlOutputPort

name = jName

1: Transition

3: Transition

source

source

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

RHS

2: ControlOutputPort

name = sName

: XorSplit

: XorJoin

4: ControlOutputPort

name = jName

: ControlOutputPort

1: Transition

source

source

destination

destination

source

controlOut

: ControlOutputPort

3: Transition

source

controlOut

5: ControlInputPort

9: ControlOutputPort

6: controlIn

8: controlOut

7: Activity

name = aName

: Transition

: Transition

: ControlInputPort

controlIn

controlOut

destination

source

: ControlInputPort : Transition

controlIn

: ControlInputPort : Transition

destination source

controlIn

Figure 18: The FreeXorSplitOO rule

20

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

6 Conclusions

Most state-of-the-art workflow languages offer a limited set of modularization mechanisms. This typ-
ically results in monolithic workflow specifications, in which different concerns are scattered across
the workflow and tangled with each other. This hinders the design, the evolution, and the reusability
of workflows expressed in these languages.

We address this problem by introducing the UNIFY framework, which supports advanced modu-
larization of workflows based on aspect-oriented principles. UNIFY allows specifying each concern
in isolation of other concerns, and provides a connector mechanism that allows connecting these
concerns according to workflow-specific connection patterns. This technical report gives a detailed
description of the semantics of the connector construct by providing a graph transformation rule for
each combination of connector type and pointcut predicate.

21

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

References

[1] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Ley-
mann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weer-
awarana. Business Process Execution Language for Web Services, version 1.1, May 2003. 3

[2] Mathieu Braem, Kris Verlaenen, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der Straeten,
Eddy Truyen, Wouter Joosen, and Viviane Jonckers. Isolating process-level concerns using
Padus. In Proceedings of the 4th International Conference on Business Process Management
(BPM 2006), volume 4102 of Lecture Notes in Computer Science, pages 113–128, Vienna, Austria,
September 2006. Springer. 3, 7, 8

[3] Anis Charfi and Mira Mezini. Aspect-oriented web service composition with AO4BPEL. In Pro-
ceedings of the 2nd European Conference on Web Services (ECOWS 2004), volume 3250 of Lecture
Notes in Computer Science, pages 168–182, Erfurt, Germany, September 2004. Springer. 3, 7

[4] Carine Courbis and Anthony Finkelstein. Towards aspect weaving applications. In Proceedings
of the 27th International Conference on Software Engineering (ICSE 2005), pages 69–77, St. Louis,
MO, USA, May 2005. ACM Press. 3, 7

[5] Oscar Gonzalez, Rubby Casallas, and Dirk Deridder. MMC-BPM: A domain-specific language
for business process analysis. In Proceedings of the 12th International Conference on Business
Information Systems (BIS 2009), volume 21 of Lecture Notes in Business Information Processing,
pages 157–168, Poznań, Poland, April 2009. Springer. 3

[6] Niels Joncheere, Dirk Deridder, Ragnhild Van Der Straeten, and Viviane Jonckers. A framework
for advanced modularization and data flow in workflow systems. In Proceedings of the 6th Inter-
national Conference on Service Oriented Computing (ICSOC 2008), volume 5364 of Lecture Notes
in Computer Science, pages 592–598, Sydney, NSW, Australia, December 2008. Springer. 3

[7] Niels Joncheere and Ragnhild Van Der Straeten. Uniform modularization of workflow concerns
using Unify. In Proceedings of the 4th International Conference on Software Language Engineer-
ing (SLE 2011). (to appear). 3

[8] Diane Jordan, John Evdemon, et al. Web Services Business Process Execution Language, version
2.0, April 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. 6

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP 97), volume 1241 of Lecture Notes in Com-
puter Science, pages 220–242, Jyväskylä, Finland, June 1997. Springer. 3

[10] Object Management Group. Business Process Model and Notation, version 2.0, January 2011.
http://www.omg.org/spec/BPMN/2.0/. 6

[11] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Volume 1: Foundations. World Scientific, River Edge, NJ, USA, 1997. 9

[12] Nick Russell, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, and Nataliya Mulyar. Workflow
control-flow patterns: A revised view. BPM Center Report BPM-06-22, BPM Center, 2006. 6

[13] Gabriele Taentzer et al. The Attributed Graph Grammar system: A development environment for
attributed graph transformation systems. http://user.cs.tu-berlin.de/~gragra/agg/. 9

22

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://user.cs.tu-berlin.de/~gragra/agg/

SOFT-TR-2011.04.15 Semantics of the UNIFY Composition Mechanism

[14] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of separation:
Multi-dimensional separation of concerns. In Proceedings of the 21st International Conference
on Software Engineering (ICSE 1999), pages 107–119, Los Angeles, CA, USA, May 1999. IEEE Com-
puter Society. 3

23

Vrije Universiteit Brussel - Software Languages Lab
Pleinlaan 2, 1050 Brussels, Belgium - http://soft.vub.ac.be/

